COE 202, Term 122
 Digital Logic Design

Quiz\# 4

Date: Monday, April 8

Q1. We would like to design an adder to add the 8 -bit constant 10101010 to an arbitrary 8-bit number. The adder is to be designed using four identical adder modules, each of which will add 2 bits of the number to the constant (10) and a carry from the next lower pair of bits and produce 2 bits of the sum and the carry to the next bits. A block diagram of part of this design is shown below:

The problem each 2-bit adder solves is:

(i) Show a truth table for the 2-bit adder (it has three inputs: a, b, and c , and it has three outputs: y, s, and t), and find minimal SOP expressions for each output.
(ii) Compute the delay from the c-input of each module to the y output of that module and the total delay for the 8 bits. Assume that the delay of a gate is related to the number of inputs i.e. the delay of an inverter is 1 , the delay of a 2 -input gate is 2 , etc.
(i)

a	b	c	y	$s t$	
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	0	1
1	1	1	1	1	0

a
$b c$
0
0

0 $|$| | 01 | 10 | | |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 |

$$
y=a+b c
$$

a| $b c$ | | | | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 00 | 01 | 11 | 10 |
| 1 | 0 | 1 | 0 | 1 |
| | 0 | 1 | | |

$$
t=\bar{b} c+b \bar{c}
$$

(ii) Delay from the c-input of each module to the y-outpoint of the $\bmod u l e=2+2=4$

Since the first block does not have a carry in, a carry is generated when $a=1$. This, the delay of $y=2$,
For the 2 nd block $\&$ ard block, each will add a delay of 4 . Thus, the delay of the carly out of the 3rd block rs

$$
2+4+4=10
$$

For the 4 th block, the delay across the s output is the largest which is $10+3+3=16$. Thus, the longest delay across me circuit is 16 .

Q2.
(i) Determine the decimal value of the 7-bit binary number (1011010) when interpreted as:

An unsigned number	A signed-magnitude number	A signed-1's complement number	A signed-2's complement number
90	-26	-37	-38

(ii) Represent the decimal value (-21) in binary using a total of 7 bits in the following notations:

| A signed-magnitude number | A signed-1's complement number | A signed-2's complement
 number |
| :---: | :---: | :---: | :---: |
| 1010101 | 1101010 | 1101011 |

(iii)Perform the following signed-2's complement arithmetic operations in binary using 5 bits. All numbers given are represented in the signed-2's complement notation. Indicate clearly the carry values from the last two stages. For each of the three operations, check and indicate whether overflow occurred or not.

	Q1 a.01101 +10110 100011 (1)	$\text { b. } \begin{array}{r} 01010 \\ -11001 \\ \hline 011 \\ 011010 \\ \text { tou } 111 \\ \hline 010001 \end{array}$	$\begin{array}{r} \text { c. } 11010 \\ -00100 \\ \hline 1 \\ 11010 \\ +11100 \\ \hline 10110 \end{array}$
Overflow Occurred? (Yes/No)	No	Yes	No

