COE 202, Term 102

Fundamentals of Computer Engineering

Quiz\# 4 (Take Home)

Due date: Monday, April 18, 2011
Q.1. Using logic works, you are required to do the following:
a. Model a full adder circuit, verify its correct functionality by simulation. Add delay attributes to the gates by making the delay of a 2 -input AND gate 2, the delay of a 2-input OR gate 2 and the delay of an XOR gate 4 . Then create a device symbol for it.

b. Using the full adder created in (a) construct a 4-bit Ripple Carry Adder (RCA). Verify its correctness by simulation and determine the longest delay. Then, create a device symbol for it.

To measure the longest propagation delay, we set $\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}=0000$ and $\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}=0000$ and then change them to $\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}=1111$ and $\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}=0001$ to generate a carry in the first cell and propagate it to the last cell. To measure the longest delay we need to find the time difference between the time when A_{0} has changed (time=90) to the time when Cout or S_{3} have changed $($ time $=106)=106-90=16 \mathrm{~ns}$. This is as expected as the generate AND gate in the first cell has a delay of 2 ns and the carry is propagated after additional 2 ns through the OR gate resulting in a total delay of 4 ns from the first cell. Then, the AND and OR gates add a 4 ns delay in each cell to propagate the carry which results in a delay of 16 ns .
c. Model a 4-bit Carry Look-Ahead Adder (CLA) using the same gate delay attributes specified in (a). Verify its correctness by simulation and determine the longest delay. Compare its delay to the 4 -bit RCA in (b). Then, create a device symbol for it.

To measure the longest propagation delay, we set $B_{3} B_{2} B_{1} B_{0}=0000$ and $A_{3} A_{2} A_{1} A_{0}=0000$ and then change them to $B_{3} B_{2} B_{1} B_{0}=1111$ and $A_{3} A_{2} A_{1} A_{0}=0001$ to generate a carry in the first cell and propagate it to the last cell. To measure the longest delay we need to find the time difference between the time when A_{0} has changed (time=70) to the time when S_{3} has changed (time=85) $=85-70=15 \mathrm{~ns}$. We have the set delay of each AND \& OR gate equal to the number of its inputs. Hence the delay for the carry signals is as follows: $\mathrm{C} 1=4 \mathrm{~ns} ; \mathrm{C} 2=9 \mathrm{~ns} ; \mathrm{C} 3=11 \mathrm{~ns}$; $\mathrm{C} 4=13 \mathrm{~ns}$. The delay for $\mathrm{S} 4=11+4=15 \mathrm{~ns}$. Note the delay compared the 4 -bit RCA has improved only by 1 ns because we have set the delay of the XOR to 4 ns . Usually the delay of the XOR is smaller and hence we get better delay improvements.
d. Model a BCD adder using the 4-bit RCA in (b) and verify its correctness by simulation.

e. Model a 4-bit by 4-bit multiplier using the 4-bit CLA adder in (c). Verify its correctness by simulation.

