Name: KEY Id#

COE 200, Term 023 Fundamentals of Computer Engineering Quiz# 4

Date: Monday, July 28, 2003

Q.1. You are required to design a combinational circuit that computes the remainder of dividing a 4-bit number $N_3N_2N_1N_0$ by 3. For example, the remainder of dividing the number 1010 by 3 is 01 and the remainder of dividing the number 0101 by 3 is 10.

a. Derive the truth table showing the relation between inputs and outputs

N_3	N_2	N_1	N_0	R_1	R_0
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	0	0
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	0	1
1	0	1	1	1	0
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	1	0
1	1	1	1	0	0

b. Derive simplified sum of products expressions for the outputs.

\mathbf{R}_1	N_1N_2	N ₀ 00	01	11	10
	N_3N_2 00	0	0	0	1
	01	0	1	0	0
	11	0	0	0	1
	10	1	0	1	0

$$R_1 = N_3 ' N_2 ' N_1 N_0 ' + N_3 ' N_2 N_1 ' N_0 + N_3 N_2 N_1 N_0 ' + N_3 N_2 ' N_1 ' N_0 ' + N_3 N_2 ' N_1 N_0 '$$

$$R_0 = N_3 ' N_2 ' N_1 ' N_0 + N_3 ' N_2 N_1 ' N_0 ' + N_3 ' N_2 N_1 N_0 + N_3 N_2 N_1 ' N_0 + N_3 N_2 ' N_1 N_0 '$$