## COE 200, Term 023

Fundamentals of Computer Engineering
Quiz\# 4
Date: Monday, July 28, 2003
Q.1. You are required to design a combinational circuit that computes the remainder of dividing a 4-bit number $\mathrm{N}_{3} \mathrm{~N}_{2} \mathrm{~N}_{1} \mathrm{~N}_{0}$ by 3 . For example, the remainder of dividing the number 1010 by 3 is 01 and the remainder of dividing the number 0101 by 3 is 10.
a. Derive the truth table showing the relation between inputs and outputs

| $\mathrm{N}_{3}$ | $\mathrm{~N}_{2}$ | $\mathrm{~N}_{1}$ | $\mathrm{~N}_{0}$ | $\mathrm{R}_{1}$ | $\mathrm{R}_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 |

b. Derive simplified sum of products expressions for the outputs.
$\mathrm{R}_{1}$

| $\mathrm{N}_{2} \mathrm{~N}_{2} \mathrm{~N}_{1} \mathrm{~N}_{0} 00$ |  | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 00 | 0 | 0 | 0 | 1 |
| 01 | 0 | 1 | 0 | 0 |
| 11 | 0 | 0 | 0 | 1 |
| 10 | 1 | 0 | 1 | 0 |

$\mathbf{R}_{\mathbf{0}}$

$\mathrm{R}_{1}=\mathrm{N}_{3}{ }^{\prime} \mathrm{N}_{2}{ }^{\prime} \mathrm{N}_{1} \mathrm{~N}_{0}{ }^{\prime}+\mathrm{N}_{3}{ }^{\prime} \mathrm{N}_{2} \mathrm{~N}_{1}{ }^{\prime} \mathrm{N}_{0}+\mathrm{N}_{3} \mathrm{~N}_{2} \mathrm{~N}_{1} \mathrm{~N}_{0}{ }^{\prime}+\mathrm{N}_{3} \mathrm{~N}_{2}{ }^{\prime} \mathrm{N}_{1}{ }^{\prime} \mathrm{N}_{0}{ }^{\prime}+\mathrm{N}_{3} \mathrm{~N}_{2}{ }^{\prime} \mathrm{N}_{1} \mathrm{~N}_{0}$
$\mathrm{R}_{0}=\mathrm{N}_{3}{ }^{\prime} \mathrm{N}_{2}{ }^{\prime} \mathrm{N}_{1}{ }^{\prime} \mathrm{N}_{0}+\mathrm{N}_{3}{ }^{\prime} \mathrm{N}_{2} \mathrm{~N}_{1}{ }^{\prime} \mathrm{N}_{0}{ }^{\prime}+\mathrm{N}_{3}{ }^{\prime} \mathrm{N}_{2} \mathrm{~N}_{1} \mathrm{~N}_{0}+\mathrm{N}_{3} \mathrm{~N}_{2} \mathrm{~N}_{1}{ }^{\prime} \mathrm{N}_{0}+\mathrm{N}_{3} \mathrm{~N}_{2}{ }^{\prime} \mathrm{N}_{1} \mathrm{~N}_{0}{ }^{\prime}$

