COE 202, Term 162
 Fundamentals of Computer Engineering

Quiz\# 4

Date: Sunday, April 16

Q1. In designing a combinational circuit that computes the function $f(X)=X^{2}-X$ for a 3-bit 2's complement signed number X, where the output $f(X)$ is an un-signed integer:
(i) How many bits do we need for the output?
[2 points]
(ii) Obtain the truth table for this circuit.
[4 points]
(iii) Obtain simplified Boolean expressions of the circuit outputs in SOP form.
[4 points]

Q2.
(i) What is the minimum number of bits needed to represent integers in the range from -100 to +100 using sign-magnitude representation?
(ii) Show the binary representations of $\mathbf{+ 4 9}$ and $\mathbf{- 4 9}$ using 10 -bits signed-magnitude, 1's complement and 2 's complement representations (record your answers in the table below).

Decimal	Binary Signed-magnitude representation	Binary Signed-1's complement representation	Binary Signed-2's complement representation
-49			
+49			

(iii) Perform the following operations on 6-bits signed numbers using 2'complement representation. Check for overflow and mark clearly any overflow occurrences.

| (1) $011100-011111$ | (2) $101111+100110$ | |
| :--- | :--- | :--- | :--- |
| | | |
| Overflow: Yes/No | | Overflow: Yes/No |

