COE 202, Term 141
 Digital Logic Design

Quiz\# 4

Date: Thursday, Nov. 20

Q1 It is required to design a circuit to compute the equation $\mathrm{Z}=2 * \mathrm{X}-\mathrm{Y}$, where X and Y are two n -bit unsigned numbers. The circuit can be designed in a modular manner where it is designed for one bit and replicated n times. A 1-bit circuit block diagram is given below:

The meaning of the values of B_{i} and C_{i} is given in the table below:

B_{i}	C_{i}	Meaning
0	0	There is no carry or borrow
0	1	There is a carry of 1
1	0	There is a borrow of 1
1	1	This condition does not occur

For example, if $X_{i}=1$ and $Y_{i}=1$, then we should have $Z_{i}=1, B_{i+1}=0$ and $C_{i+1}=0$. If $X_{i}=0$ and $Y_{i}=1$, then we should have $\mathrm{Z}_{\mathrm{i}}=1, \mathrm{~B}_{\mathrm{i}+1}=1$ and $\mathrm{C}_{\mathrm{i}+1}=0$.

The figure below shows how a 4 -bit $\mathrm{Z}=2 * \mathrm{X}-\mathrm{Y}$ circuit is implemented using 4 copies of the basic 1-bit cell.

Derive the truth table for the basic one-bit cell. Derive the equation for the Z output only.

