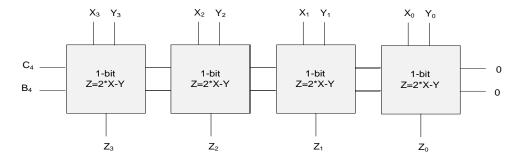

Name: Id#

COE 202, Term 141 Digital Logic Design

Quiz#4

Date: Thursday, Nov. 20

Q1 It is required to design a circuit to compute the equation Z=2*X-Y, where X and Y are two n-bit unsigned numbers. The circuit can be designed in a modular manner where it is designed for one bit and replicated n times. A 1-bit circuit block diagram is given below:



The meaning of the values of B_i and C_i is given in the table below:

Bi	Ci	Meaning
0	0	There is no carry or borrow
0	1	There is a carry of 1
1	0	There is a borrow of 1
1	1	This condition does not occur

For example, if $X_i=1$ and $Y_i=1$, then we should have $Z_i=1$, $B_{i+1}=0$ and $C_{i+1}=0$. If $X_i=0$ and $Y_i=1$, then we should have $Z_i=1$, $B_{i+1}=1$ and $C_{i+1}=0$.

The figure below shows how a 4-bit Z=2*X-Y circuit is implemented using 4 copies of the basic 1-bit cell.

Derive the truth table for the basic one-bit cell. Derive the equation for the Z output only.