Name:		Id#									
COE 202, Term 132 Digital Logic Design											
		•	Quiz# 4								
		Date: T	uesday, April 15								
11. .Determine th	e decimal value of th	ne 7-bit binary	number (1011010) w	hen interpreted	d as:						
An unsigned number	A signed-magnit	ude number	A signed-1's com	plement numb	oer	A signed-2's complemen number					
-	ecimal value (- 21) in gnitude number	binary <u>using a total of 7 bits</u> in the following A signed-1's complement number			g notations: A signed-2's complement number						
epresented in the	signed-2's compleme	ent notation. In	hmetic operations in ndicate clearly the caser overflow occurred	rry values fron		All numbers given are last two stages. For	_				
	a. 01101 +10110	1	b. 01010 - 11001	c		1010 0100					

Overflow Occurred? (Yes/No) **(B)** Consider the 2's complement 4-bit adder/subtractor hardware shown (**FA** = full adder).

i. Fill in the spaces in the table below.

Inputs			Outputs					
A	В	Control	S (binary)	C ₄	C_3	Overflow		
0111	0101	0						
1010	1101	1						

- ii. What type of 4-bit adder is used in this design? (Circle the correct answer):
 - Carry-ripple adder
 - Carry-look-ahead adder
- (C) Consider a 2-bit version of the hardware above which is shown below. Shown also is full adder used. Given that each basic gate (i.e. AND, OR, NOT) has a delay of τ ns and the XOR gate has a delay of 3τ :

- i. Express, as a function of τ , the longest time interval needed for the hardware to perform an operation on the two 2-bit numbers.
- ii. If such an operation must be performed in no longer than 33 ns, calculate the maximum basic gate delay allowed.