COE 202, Term 132
 Digital Logic Design

Quiz\# 4

Date: Tuesday, April 15

Q1. .Determine the decimal value of the 7-bit binary number (1011010) when interpreted as:

An unsigned number	A signed-magnitude number	A signed-1's complement number	A signed-2's complement number

ii. Represent the decimal value (-21) in binary using a total of 7 bits in the following notations:

A signed-magnitude number	A signed-1's complement number	A signed-2's complement number

iii. Perform the following signed-2's complement arithmetic operations in binary using 5 bits. All numbers given are represented in the signed-2's complement notation. Indicate clearly the carry values from the last two stages. For each of the three operations, check and indicate whether overflow occurred or not.

(B) Consider the 2's complement 4-bit adder/subtractor hardware shown (FA = full adder).
i. Fill in the spaces in the table below.

Inputs			Outputs				
\mathbf{A}	\mathbf{B}	Control	\mathbf{S} (binary)	C_{4}	C_{3}	Overflow	
0111	0101	0					
1010	1101	1					

ii. What type of 4-bit adder is used in this design? (Circle the correct answer):

- Carry-ripple adder
- Carry-look-ahead adder
(C) Consider a 2-bit version of the hardware above which is shown below. Shown also is full adder used. Given that each basic gate (i.e. AND, OR, NOT) has a delay of $\tau \mathrm{ns}$ and the XOR gate has a delay of 3τ :

The Full Adder (FA)

i. Express, as a function of τ, the longest time interval needed for the hardware to perform an operation on the two 2bit numbers.
ii. If such an operation must be performed in no longer than 33 ns , calculate the maximum basic gate delay allowed.

