COE 202, Term 112
 Digital Logic Design

Quiz\# 4

Date: Saturday, April 7

Q1.
i. Determine the decimal value of the 8 -bit binary number (11010100) when interpreted as:

An unsigned number	A signed-magnitude number	A signed-1's complement number	A signed-2's complement number

ii. Represent the decimal value (-40) in binary using a total of 8 bits in the following notations:

A signed-magnitude number	A signed-1's complement number	A signed-2's complement number

iii. Perform the following signed-2's complement arithmetic operations in binary using 5 bits. All numbers given are represented in the signed-2's complement notation. Indicate clearly the carry values from the last two stages. For each of the three operations, check and indicate whether overflow occurred or not.

Q2. Design a combinational circuit that receives a 4-bit unsigned number $\mathbf{I}=\mathbf{I}_{3} \mathbf{I}_{2} \mathbf{I}_{\mathbf{1}} \mathbf{I}_{\mathbf{0}}$ as input and generates the remainder of dividing this number by 3 .

