Name: KEY Id#

COE 202, Term 151 Digital Logic Design

Quiz#3

Date: Sunday, Oct. 25

Q1. <u>Assuming the availability of all variables and their complements</u>, simplify the following two Boolean functions F and G subject to the given don't care conditions d1 and d2 using the K-Map method:

(a) Implement F using only **NOR** gates:

$$F(A, B, C, D) = \sum(4, 5, 6, 10, 12, 13)$$

$$d1(A, B, C, D) = \sum(3, 7, 9)$$

To get a 2-Level NOR-NOR implementation, we use the simplified POS expression (Groups of 0's) given by:

$$F = (A+B) \cdot (B+C) \cdot (A'+B'+C') \cdot \{(C'+D') \text{ or } (B+D')\}$$

(b) Implement G using only <u>NAND</u> gates:

$$G(A, B, C, D) = \sum (0, 2, 8, 11, 13, 15)$$

 $d2(A, B, C, D) = \sum (3, 6, 7, 9, 12)$

Simplified SOP expression directly maps into a 2-Level NAND-NAND implementation.

$$G = A D + A' B' D' + A C' OR G = A D + B' C' D' + A' C$$

		C D					
		00	01	11	10		
	00			X			
В	01	1	1	X	1		
AB	11	1	1				
	10		X		1		

	C D							
		00	01	11	10	-		
AB	00	1		X	1			
	01			X	X			
	11	X	1	1				
	10	1	X	1				
		<u> </u>	l		l	1		

Q2. Implement the following circuit using only 2-input XOR gates with minimal number of gates:

Solution:

