COE 202, Term 121

Digital Logic Design

Quiz\# 3

Date: Saturday, Nov. 10

Q1. For the Boolean function $F(W, X, Y, Z)=\Sigma m(0,1,2,3,7,8,10), d(W, X, Y, Z)=\Sigma m(5,6$, $11,15)$ shown in the k -map below:

YZ				
WK	00	01	11	10
00	1	1	1	1
01	0	x	1	x
11	0	0	x	0
10	1	0	x	1

(i) Identify all the prime implicants and the essential prime implicants of F .
(ii) Simplify the Boolean function \mathbf{F} into a minimal sum-of-products expression.

Q2. Implement the logic circuit given below using only NOR and NOT gates

Q3. Design a 3-bit decrementer using only basic gates (AND, OR, and NOT). The circuit takes a 3-bit unsigned number $\mathbf{I}=\mathbf{I}_{2} \mathbf{I}_{\mathbf{1}} \mathbf{I}_{0}$ as input and generates a 3-bit output number $\mathbf{Z}=\mathbf{Z}_{2} \mathbf{Z}_{1} \mathbf{Z}_{0}$ and a Valid output \mathbf{V}. Whenever $\mathbf{I}>\mathbf{0}$ the output $\mathbf{Z}=\mathbf{I} \mathbf{- 1}$ and $\mathbf{V}=\mathbf{1}$. If $\mathbf{I}=\mathbf{0}$, the output is invalid which is indicated by an output $\mathbf{V}=\mathbf{0}$. Derive the simplified Boolean expressions of all outputs.

