COE 202, Term 102

Fundamentals of Computer Engineering

Quiz\# 3

Date: Saturday, April 16

Q1.
(i) Simplify the following Boolean functions \mathbf{F} together with the don't care conditions \mathbf{d}, into minimal sum-of-products expressions. Identify all the prime implicants and the essential prime implicants.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(\mathbf{0}, 6,7,8,9), \mathrm{d}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(1,2,5,10,12,13,14$,
15)

Prime Implicants: $\mathrm{C}^{\prime} \mathrm{D}, \mathrm{CD}^{\prime}, \mathrm{BC}, \mathrm{BD}, \mathrm{B}^{\prime} \mathrm{C}^{\prime}, \mathrm{B}^{\prime} \mathrm{D}^{\prime}, \mathrm{AC}^{\prime}, \mathrm{AD}^{\prime}$
There are no essential prime implicants.
$\mathrm{F}=\mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{BC}$
(ii) Show an implementation of the function using minimal number of NAND gates.

(iii) Show an implementation of the function using minimal number of NOR gates.

${ }^{\text {CD }}$	00	01	11	10
AB 00	1	X	0	X
01	0	X	1	1
11	X	X	X	X
10	1	1	0	X

$F^{\prime}=B^{\prime} C+B C^{\prime}=>F=F^{\prime}=\left(B+C^{\prime}\right)\left(B^{\prime}+C\right)$

