COE 202, Term 162

Fundamentals of Computer Engineering

Quiz\# 2 Solution

Date: Sunday, March 5

Q1. Using algebraic manipulation, simplify the following functions into minimum number of literals in sum-of-product form:
a. $\quad F(A, B, C)=A B^{\prime} C+B^{\prime} C^{\prime}+A B^{\prime} C^{\prime}+A^{\prime} C^{\prime}$

$$
\begin{array}{ll}
=\mathrm{A} \mathrm{~B} \\
& {\left[\mathrm{C}+\mathrm{C}^{\prime}\right]+\mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime}} \\
& \\
=\mathrm{A} \mathrm{~B} \mathrm{~B}^{\prime}+\mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} & \left(\mathrm{C}+\mathrm{C}^{\prime}=1\right) \\
=\mathrm{A} \mathrm{~B} \mathrm{~B}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} & (\text { by Consensus })
\end{array}
$$

b. $\quad F(X, Y, W, Z)=Y+X^{\prime} Y^{\prime} W Z+Y^{\prime} W Z+X^{\prime} Y W Z^{\prime}+Y^{\prime} W{ }^{\prime} Z+X Y W Z^{\prime}$

$$
\text { = Y + Y' W Z + Y' } \mathrm{W}^{\prime} \mathrm{Z} \quad \text { (By absorption) }
$$

OR $\quad=Y\left[1+X^{\prime} W Z^{\prime}+X W Z^{\prime}\right]+Y^{\prime} W Z\left[1+X^{\prime}\right]+Y^{\prime} W^{\prime} Z$

$$
=\mathrm{Y}+\mathrm{Y}^{\prime} \mathrm{Z}\left(\mathrm{~W}+\mathrm{W}^{\prime}\right)
$$

$$
=\mathrm{Y}+\mathrm{Y}^{\prime} \mathrm{Z} \quad\left(\mathrm{~W}+\mathrm{W}^{\prime}=1\right)
$$

$$
\left.=\left(\mathrm{Y}+\mathrm{Y}^{\prime}\right)(\mathrm{Y}+\mathrm{Z}) \quad \text { (By distributive law }\right)
$$

$$
=\mathrm{Y}+\mathrm{Z} \quad\left(\mathrm{Y}+\mathrm{Y}^{\prime}=1\right)
$$

Q2. Find the complement of the following function without any simplification:

$$
\begin{aligned}
& F=(X Y+Z) \cdot W^{\prime}+E D^{\prime} \\
& F=\left[((X Y)+Z) \cdot W^{\prime}\right]+\left(E D^{\prime}\right) \\
& F^{\prime}=\left[\left(\left(X^{\prime}+Y^{\prime}\right) \cdot Z^{\prime}\right)+W\right] \cdot\left(E^{\prime}+D\right)
\end{aligned}
$$

Q3. Consider the following function:

$$
F(X, Y, Z)=X Y+\left(X^{\prime}+Z\right)\left(Y+Z^{\prime}\right)
$$

a. Express F as a sum of minterms using $\mathrm{F}=\sum \mathrm{m}()$ notation.

$$
\begin{aligned}
& F=X Y+X^{\prime} Y+X^{\prime} Z^{\prime}+Y Z=Y+X^{\prime} Z^{\prime} \\
& Y=>-1-=>m 2, m 3, m 6, m 7 \\
& X^{\prime} Z^{\prime}=>0-0 \Rightarrow m 0, m 2 \\
& F=\sum m(0,2,3,6,7)
\end{aligned}
$$

b. Express F as an algebraic sum of minterms.

$$
\mathrm{F}=\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}^{\prime}+\mathrm{X}^{\prime} \mathrm{Y} \mathrm{Z}^{\prime}+\mathrm{X}^{\prime} \mathrm{Y} Z+X Y Z^{\prime}+X Y Z
$$

c. Express F as a product of maxterms using $\mathrm{F}=\Pi \mathrm{M}()$ notation.

$$
\begin{aligned}
& \mathrm{F}^{\prime}=\sum \mathrm{m}(1,4,5) \\
& \mathrm{F}=\prod \mathrm{M}(1,4,5)
\end{aligned}
$$

