COE 202, Term 151
 Digital Logic Design

Quiz\# 2

Date: Thursday, Sep. 17

Q1 Use Boolean algebra to simplify the following equations into the given number of literals in sum-of-product form. Show clearly all your steps.

$$
\begin{aligned}
& \text { a. Reduce } \mathrm{AB}+\mathrm{A}^{\prime} \mathrm{C}+\mathrm{BC}+\mathrm{B}^{\prime} \mathrm{C} \text { to } 2 \text { literals } \\
& =A B+A^{\prime} C+B C+B C^{\prime}+B^{\prime} C \quad\left[b y \text { consensus between } A B \text { and } \mathrm{A}^{\prime} \mathrm{C}\right] \\
& =A B+A^{\prime} C+B\left[C+C^{\prime}\right]+B^{\prime} C \quad[b y \text { distributive law] } \\
& =A B+A^{\prime} C+B+B^{\prime} C \\
& =\mathrm{A}^{\prime} \mathrm{C}+\mathrm{B}+\mathrm{B}^{\prime} \mathrm{C} \quad \text { [by absorption] } \\
& =\mathrm{A}^{\prime} \mathrm{C}+\left(\mathrm{B}+\mathrm{B}^{\prime}\right)(\mathrm{B}+\mathrm{C}) \quad \text { [by distributive law] } \\
& =A^{\prime} C+B+C \\
& =\mathrm{B}+\mathrm{C} \quad \text { [by absorption] }
\end{aligned}
$$

b. Reduce $[\mathrm{A}+\mathrm{BC}]+\mathrm{B}$ to 2 literals

$$
\begin{array}{ll}
=\mathrm{A}^{\prime} \cdot\left(\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)+\mathrm{B} & \text { [by Demorgan's } \\
=\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime}+\mathrm{B} & \\
=\left(\mathrm{A}^{\prime}+\mathrm{B}\right)\left(\mathrm{B}^{\prime}+\mathrm{B}\right)+\mathrm{A}^{\prime} \mathrm{C}^{\prime} & \\
=\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} & \text { [by distributributive } \\
=\mathrm{A}^{\prime}+\mathrm{B} & \text { [by absorption] }
\end{array}
$$

Q2. Given the Boolean function $F(X, Y, Z)=(X+Y)(\bar{X} \bar{Y}+X Z)$:
a. Express F as a product-of-Maxterms, $F=\Pi M$.

$$
\mathrm{F}=\mathrm{XZ}+\mathrm{X} \mathrm{Y} \mathrm{Z}=\mathrm{XZ}=\sum \mathrm{m}(5,7)=\prod M(0,1,2,3,4,6)
$$

b. Find the algebraic sum-of-minterms expression for F.

$$
\mathrm{F}=\sum \mathrm{m}(5,7)=X \mathrm{Y}^{\prime} \mathrm{Z}+\mathrm{XYZ}
$$

