COE 202, Term 132
 Digital Logic Design

Quiz\# 2

Date: Tuesday, Feb. 25

Q1. Prove the identity of each of the following Boolean functions using algebraic manipulation. Start with the left-hand side expression and derive from it the right-hand side expression.
i. $\bar{a} \bar{c}+a d+b \bar{c} d=\bar{a} \bar{c}+a d$
$\mathrm{A}^{\prime} \mathrm{C}^{\prime}+\mathrm{AD}+\mathrm{B}^{\prime} \mathrm{D}=\mathrm{A}^{\prime} \mathrm{C}^{\prime}+\mathrm{AD}+\mathrm{B} \mathrm{C}^{\prime} \mathrm{D}+\mathrm{C}^{\prime} \mathrm{D}$ (by consensus between $\left.\mathrm{A}^{\prime} \mathrm{C}^{\prime}+\mathrm{AD}\right)$ $=A^{\prime} C^{\prime}+A D+C^{\prime} D$ (by absorption of $B^{\prime} C^{\prime} D$ in $\left.C^{\prime} D\right)$
$=A^{`} C^{\prime}+A D$ (by consensus between $\left.\mathrm{A}^{`} \mathrm{C}^{`}+\mathrm{AD}\right)$
Another Solution:
$A^{\prime} C^{\prime}+A D+B C^{\prime} D=A^{\prime} C^{\prime}+A D+B C^{\prime} D\left(A+A^{\prime}\right)$
$=A^{\prime} C^{\prime}+A D+A B C C^{\prime} D+A^{\wedge} B C^{\prime} D$
$=A^{\prime} C^{\prime}+A D\left(\right.$ by absorption of A B C $C^{\prime} D$ in $A D$ and absorption of $A^{\prime} B^{\prime} C^{\prime} D$ in $\left.A^{\prime} C^{\prime}\right)$
ii. $\overline{(\bar{a}[\bar{c}+d]+c[\bar{b}+\bar{d}]+\bar{c} \bar{d})}=a d(b+\bar{c})$
$=\left(\mathrm{a}+\mathrm{c} \mathrm{d}^{\prime}\right)\left(\mathrm{c}^{\prime}+\mathrm{bd}\right)(\mathrm{c}+\mathrm{d})$ (by Demogan's Law)
$=\left(a c^{`}+a b d\right)(c+d)$ (by distributive law)
$=\left(a c^{\prime} d+a b c d+a b d\right)$ (by distributive law)
$=a c^{`} d+a b d$ (by absorption of abcdin abd)
$=\mathrm{ad}\left(\mathrm{c}^{`}+\mathrm{b}\right)$ (by distributive law)

Q2. Given the Boolean functions $F(A, B, C)=\sum m(0,2,4,7)$ and $G(A, B, C)=\Pi M(0,3,5,6)$.
i. Give the algebraic sum of minterms expression for F.

$$
F=\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+A \bar{B} \bar{C}+A B C
$$

ii. Express the function G as a sum of minterms, $G=\sum m(\ldots)$

$$
G=\sum m(1,2,4,7)
$$

iii. Express the function $F . G$ as a sum of minterms, $F . G=\sum m(\ldots)$

$$
F . G=\sum m(2,4,7)
$$

iv. Express the function $F+G$ as a product of maxterms, $\boldsymbol{F}+\boldsymbol{G}=\prod \boldsymbol{M}(\ldots)$

$$
F+G=\sum m(0,1,2,4,7)=\prod M(3,5,6)
$$

