COE 200, Term 023
 Fundamentals of Computer Engineering

Quiz\# 2

Date: Saturday, July 12, 2003

Q1. Consider the following two numbers $\mathbf{A}=-\mathbf{9 8}$ and $\mathbf{B}=\mathbf{3 3}$:
a. Express the two numbers in Sign-Magnitude, 1`s complement and 2's complement notations, assuming 8 -bit representation. b. Perform the operation A-B two times, once using 1`s complement notation and once using 2`s complement notation.

Q2. Determine, in binary and decimal, the smallest (negative) number and the largest (positive) number that can be stored using Sign-Magnitude, 1's Complement and 2's complement notations, assuming 12-bit representation.

COE 200, Term 023
Fundamentals of Computer Engineering

Quiz\# 2

Date: Saturday, July 12, 2003

Q1. Consider the following two numbers $\mathbf{A}=-98$ and $\mathbf{B}=\mathbf{3 3}$:
a. Express the two numbers in Sign-Magnitude, 1's complement and 2's complement notations, assuming 8 -bit representation.

Number	sign-magnitude	1's Comp.	2's Comp.
98	01100010	01100010	01100010
-98	11100010	10011101	10011110
33	00100001	00100001	00100001

b. Perform the operation A-B two times, once using 1`s complement notation and once using 2 's complement notation.

$$
\begin{aligned}
& \text { - I's complement: } \\
& 10011101-00100001 \\
& =10011101+11011110 \\
& 111 \\
& 10011101 \\
& +11011110 \\
& D \leftarrow 01111611 \\
& + \\
& 01111100 \\
& \text { overflow because the sign-bit has changed } \\
& \text { The correct result should be }-131 \\
& \text { whreh cannot be represented in } \\
& \text { 8-bits. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - ils complement: } \\
& \begin{array}{l}
10011110-00100001=10011110+11011111 \\
+10111110 \\
\\
\frac{11011111}{0} 1111101 \\
\text { overflow because the sign-bit has changed. }
\end{array}
\end{aligned}
$$

Q2. Determine, in binary and decimal, the smallest (negative) number and the largest (positive) number that can be stored using Sign-Magnitude, 1's Complement and 2's complement notations, assuming 12-bit representation.

$$
\begin{aligned}
& \text { - Sogn-magnikude. } \\
& -2^{\prime \prime}-1=-2047 \quad 11111111111 \\
& \text { - Largest } \quad 2^{\prime \prime}-1=+2047 \\
& 01111111111 \\
& \text { - Ils Complement: } \\
& \begin{array}{lll}
\text { - Smallest } & -2^{4}-1=-2047 & 1000000000 \\
\text { - Largest }+2^{4}-1=+2047 & 01111111111
\end{array} \\
& \text { - } 2^{\prime} s \text { complement: } \\
& \begin{array}{lll}
\text { - smallest } & -2^{11}=-2048 & 100000000000 \\
\text { - Largest } & +2^{11}-1=+2047 & 011111111111
\end{array}
\end{aligned}
$$

