COE 202, Term 151

 Digital Logic Design

 Digital Logic Design}

Quiz\# 1

Date: Sunday, Sep. 6, 2015

Q1. Determine the decimal value of the following numbers:
i. $(11011100.011)_{2}$

Integer part $=\left(2^{5}-2^{2}\right)+\left(2^{8}-2^{6}\right)=32-4+256-64=288-68=220$
OR: $255-32-3=255-35=220$
Fraction part $=1 / 4+1 / 8=0.25+0.125=0.375$
Thus, the number is equal to 220.375 .
ii. $(2 \text { A.C })_{16}$
$=2 * 16+10+12 / 16=42.75$

Q2. Represent the following numbers in binary. Use as many bits as needed, and use only 4 binary digits to represent the fraction:
i. $(499.7)_{10}$

Integer part= $511-12=111110011$
Fraction part: $0.7 * 16=11.2=>$ First hex fraction digit is $B=>(0 . B)_{16}=(0.1011)_{2}$ Thus, the number in binary is $(111110011.1011)_{2}$
ii. (E3.5) ${ }_{16}$
$=(11100011.0101)_{2}$

Q3. Perform the following arithmetic operations in the given bases:

$$
\begin{array}{ll}
\text { i. } & (\mathbf{0 1 1 1 0 1 1 1})_{2}+(\mathbf{0 1 0 1 1 0 1 1})_{2} \\
& =(11010010)_{2} \\
\text { ii. } & (\mathbf{A 2})_{16}-(\mathbf{8 E})_{16} \\
=(14)_{16} \\
\text { iii. } & (\mathbf{5 E})_{16} *(\mathbf{3 2})_{16} \\
& =(125 \mathrm{C})_{16}
\end{array}
$$

Q4. Fill in the Spaces: (Show all work needed to obtain your answer)
a. Given that the base R number $(222)_{\mathrm{R}}$ is equal to $(62)_{10}$. Then the base $\mathrm{R}=\underline{5}$.
$2 R^{2}+2 R+2=62 \Rightarrow R^{2}+R+1=31 \Rightarrow R^{2}+R-30=0 \Rightarrow(R+6)(R-5)=0$
$\Rightarrow R=-6$ or $R=5$
b. The largest unsigned decimal value that can be expressed using 6 binary integer digits and 2 binary fractional digits is $2^{6}-2^{-2}=63.75$.
c. The number $\mathbf{5 3}$ is represented in BCD as 01010011 .
d. Given that an 8 -bit register stores the ASCII code of a character in the least significant 7 bits and a parity bit in the most significant bit. Assuming that the register contains the hexadecimal value $\mathbf{C 4}$ representing a character, the character stored in the register is ' D ' and the parity used is odd (i.e. even or odd parity). Note that the ASCII code of character 'A' is 41 h and the ASCII code of character ' a ' is 61 h .

