COE 202, Term 141
 Digital Logic Design

Quiz\# 1

Date: Tuesday, Sep. 16

Q1. Assume that an analogue signal has a range of $\mathbf{0}$ to $\mathbf{1 0}$ volts. Suppose that we need to quantize the analogue signal into a digital signal using only $\mathbf{4}$ different values. Determine these values and the maximum quantization error.

Step $=10 / 4=5 / 2 ;$ Maximum quantization error $=5 / 4$
Values: 5/4, 15/4, 25/4, 35/4

Q2. Determine the decimal value of the following numbers:
i. $(11110011.111)_{2}$

$$
=243.875
$$

ii. $(4 \mathrm{~A} . \mathrm{C})_{16}$
$=74.75$

Q3. Represent the following numbers in binary. Use as many bits as needed, and approximate the fraction to $\mathbf{4}$ binary digits:
i. $(250.6)_{10}$

$$
=(11111010.1001)_{2}
$$

ii. (EF.2) ${ }_{16}$

$$
=(11101111.0010)_{2}
$$

Q4. Perform the following arithmetic operations:

i. $\quad(01101111)_{2}+(00100111)_{2}$

$$
=(10010110)_{2}
$$

ii. $(\mathbf{8 A})_{16}-(\mathbf{2 B})_{16}$

$$
=(5 \mathrm{~F})_{16}
$$

iii. $(\mathbf{2 F})_{16} *(15)_{16}$

$$
=(3 \mathrm{DB})_{16}
$$

Q5. Fill in the Spaces: (Show all work needed to obtain your answer)
a. The largest decimal value that can be expressed using 4 binary integer digits and 4 binary fractional digits is $=2^{4}-2^{-4}=15.9375$.
b. The number $\mathbf{5 9}$ is represented in BCD as 01011001 .
c. Given that an 8 -bit register stores the ASCII code of a character in the least significant 7 bits and a parity bit in the most significant bit. Assuming that the register contains the hexadecimal value C5 representing a character, the character stored in the register is \underline{E} and the parity used is even i.e. even or odd parity). Note that the ASCII code of character 'A' is 41 h and the ASCII code of character ' a ' is 61 h .

