Name: Key Id#

COE 202, Term 132 Digital Logic Design

Quiz# 1

Date: Sunday, Feb. 9

Q1. Assume that an analogue signal has a range of **0 to 5 volts**. Suppose that we need to quantize the analogue signal into a digital signal using only **4** different values. Determine these values and the maximum <u>quantization error</u>.

Step = 5/4; Maximum quantization error = 5/8

Values: 5/8, 15/8, 25/8, 35/8

- **Q2.** Determine the **decimal** value of the following numbers:
 - i. $(10110111.011)_2$
 - = 183.275
 - ii. $(3F.A)_{16}$
 - = 63.625
- **Q3.** Represent the following numbers in **binary**. Use as many bits as needed, and approximate the fraction to **4 binary digits**:
 - i. $(191.4)_{10}$
 - $=(101111111.0110)_2$

ii.
$$(CE.5)_{16}$$

= $(1100\ 1110.0101)_2$

Q4. Perform the following arithmetic operations:

- i. $(01101011)_2 + (00110101)_2$ = $(10100000)_2$
- ii. $(F8)_{16} (AA)_{16}$ $= (4E)_{16}$
- iii. $(3B)_{16} * (29)_{16}$ $= (973)_{16}$

Q5. Fill in the Spaces: (Show all work needed to obtain your answer)

- a. The largest 2-digit hexadecimal number has the decimal value_____255_____.
- b. The number **24** is represented in **BCD** as _____0010 0100_____.
- c. Given that an 8-bit register stores the ASCII code of a character in the least significant 7 bits and a parity bit in the most significant bit. Assuming that the register contains the hexadecimal value **E4** representing a character, the character stored in the register is __'d'___ and the parity used is ___even___(i.e. even or odd parity). Note that the ASCII code of character 'A' is 41h and the ASCII code of character 'a' is 61h.