COE 202, Term 132
 Digital Logic Design

Quiz\# 1

Date: Sunday, Feb. 9

Q1. Assume that an analogue signal has a range of $\mathbf{0}$ to $\mathbf{5}$ volts. Suppose that we need to quantize the analogue signal into a digital signal using only $\mathbf{4}$ different values. Determine these values and the maximum quantization error.

Step $=5 / 4 ;$ Maximum quantization error $=5 / 8$
Values: $5 / 8,15 / 8,25 / 8,35 / 8$

Q2. Determine the decimal value of the following numbers:
i. $(10110111.011)_{2}$
$=183.275$
ii. $(3 \mathrm{~F} . \mathrm{A})_{16}$
$=63.625$

Q3. Represent the following numbers in binary. Use as many bits as needed, and approximate the fraction to $\mathbf{4}$ binary digits:
i. $(191.4)_{10}$
$=(10111111.0110)_{2}$
ii. (CE.5) ${ }_{16}$

$$
=(11001110.0101)_{2}
$$

Q4. Perform the following arithmetic operations:
i. $\quad(01101011)_{2}+(\mathbf{0 0 1 1 0 1 0 1})_{2}$

$$
=(10100000)_{2}
$$

ii. $(\mathbf{F 8})_{16}-(\mathbf{A A})_{16}$

$$
=(4 \mathrm{E})_{16}
$$

iii. $(\mathbf{3 B})_{16} *(29)_{16}$
$=(973)_{16}$

Q5. Fill in the Spaces: (Show all work needed to obtain your answer)
a. The largest 2-digit hexadecimal number has the decimal value \qquad 255 \qquad .
b. The number $\mathbf{2 4}$ is represented in BCD as \qquad 00100100 \qquad .
c. Given that an 8 -bit register stores the ASCII code of a character in the least significant 7 bits and a parity bit in the most significant bit. Assuming that the register contains the hexadecimal value E4 representing a character, the character stored in the register is __' ${ }^{\prime}$ ' \qquad and the parity used is even \qquad (i.e. even or odd parity). Note that the ASCII code of character ' A ' is 41 h and the ASCII code of character ' a ' is 61 h .

