COE 202, Term 131
 Digital Logic Design

Quiz\# 1

Date: Thursday, Sep. 19

Q1. Assume that an analogue signal has a range of $\mathbf{0}$ to $\mathbf{1 0}$ volts. Suppose that we need to quantize the analogue signal into a digital signal using only 5 different values. Determine these values and the maximum quantization error. How many bits are needed to transmit one of these 5 values?

Step $=10 / 5=2 \quad$ Maximum quantization error $=$ step $/ 2=1$ Values: 1, 3, 5, 9
Since we have 5 values, it is sufficient to have 3 bits to encode them.

Q2. Determine the decimal value of the following numbers:
i. $\quad(11111100.101)_{2}$

$$
=252.625
$$

ii. $(2 \mathrm{~A} .4)_{16}$

$$
=42.25
$$

Q3. Represent the following numbers in binary and hexadecimal. Use as many bits as needed, and approximate the fraction to $\mathbf{4}$ binary digits:
i. $(160.1875)_{10}$

$$
=(10100000.0011)_{2}=(\mathrm{A} 0.3)_{16}
$$

ii. $(57.33)_{8}$
$=(101111.011011)_{2}=(2 \mathrm{~F} .6 \mathrm{C})_{16}$

Q4. Perform the following arithmetic operations:

i. $\quad(01101111)_{2}+(\mathbf{0 0 1 1 1 1 1 1})_{2}$

$=(10101110)_{2}$
ii. $(A 0)_{16}-(99)_{16}$
$=(07)_{16}$
iii. $(5 A)_{16} *(12)_{16}$

$$
=(654)_{16}
$$

Q5. Fill in the Spaces: (Show all work needed to obtain your answer)
a. In binary system, the largest decimal value that can be expressed using $\mathbf{4}$ integral digits and $\mathbf{2}$ fractional digits is $=(1111.11)_{2}=(15.75)_{10}$.
b. Representing the number 95 in $\mathbf{B C D}$ requires a minimum of \qquad 8 \qquad (how many) bits.
c. Given that an 8-bit register stores the ASCII code of a character in the least significant 7 bits and a parity bit in the most significant bit. Assuming that the register contains the hexadecimal value C6 representing a character, the character stored in the register is \qquad F \qquad and the parity used is ___even \qquad (i.e. even or odd parity). Note that the ASCII code of character 'A' is 41 h and the ASCII code of character ' a ' is 61 h .

