COE 202, Term 122
 Digital Logic Design

Quiz\# 1

Date: Monday, Feb. 11

Q1. Assume that a signal has a range of 0 to 8 volts. Suppose that we need to quantize the signal into a digital signal using only 5 different values. Determine these values and the maximum quantization error.

Step $=8 / 5=1.6$, Maximum quantization error $=$ step $/ 2=8 / 10=0.8$.
Thus, values $=\{0.8,2.4,4,5.6,7.2\}$.

Q2. Determine the decimal value of the following numbers:
i. $(10100100.011)_{2}$

$$
=128+32+4+1 / 4+1 / 8=164.375
$$

ii. $(5 \mathrm{~F} .82)_{16}$

$$
=5 * 16+15+8 / 16+8 / 256=95.5078
$$

Q3. Represent the following numbers in binary and hexadecimal. Use as many bits as needed, and approximate the fraction to $\mathbf{4}$ binary digits:
i. $(500.8)_{10}$

$$
\begin{aligned}
& =(111110100.1100)_{2} \\
& =(1 \mathrm{~F} 4 . \mathrm{C})_{16}
\end{aligned}
$$

ii. $(251.71)_{8}$

$$
\begin{aligned}
& =(010101001.111001)_{2} \\
& =(\mathrm{A} 9 . \mathrm{E} 4)_{16}
\end{aligned}
$$

Q4. Perform the following arithmetic operations:
i. $\quad(10011011)_{2}+(01011111)_{2}$
$=(11111010)_{2}$
ii. (F0) ${ }_{16}-(\mathrm{B} 2)_{16}$
$=(3 \mathrm{E})_{16}$

Q5. Fill in the Spaces: (Show all work needed to obtain your answer)
a. In binary system, the largest value that can be expressed using \mathbf{n} integral digits and \mathbf{m} fractional digits is $2^{\mathrm{n}}-2^{-\mathrm{m}}$.
b. Counting the number of hours in one week in BCD requires a minimum of $\underline{12}$ (how many) bits.
c. Given that an 8 -bit register stores the ASCII code of a character in the least significant 7 bits and a parity bit in the most significant bit. Assuming that the register contains the hexadecimal value E4 representing a character, the character stored in the register is'd' and the parity used is even (i.e. even or odd parity). Note that the ASCII code of character 'A' is 41 h and the ASCII code of character ' a ' is 61 h .

