COE 202, Term 121
 Digital Logic Design

Quiz\# 1

Date: Wednesday, Sep. 19

Q1. Assume that a signal has a range of 0 to 3 volts. Suppose that we need to quantize the signal into a digital signal using only 4 different values. Determine these values and the maximum quantization error.

The gap between the values is $3 / 4=0.75$.
The maximum quantization error is $3 / 8=0.375$.

The values are: $0.375,1.125,1.875,2.625$

Q2. Determine the decimal value of the following numbers:
i. $(11101110.101)_{2}$

$$
=238.625
$$

ii. $(2 \mathrm{~A} .48)_{16}$
$=42.28125$

Q3. Represent the following numbers in binary and hexadecimal. Use as many bits as needed, and approximate the fraction to $\mathbf{4}$ binary digits:
i. $\quad(1010.7)_{10}$

$$
\begin{aligned}
& =(1111110010.1011)_{2} \\
& =(3 \mathrm{~F} 2 . \mathrm{B})_{16}
\end{aligned}
$$

ii. $(731.56)_{8}$

$$
\begin{aligned}
& =(111011001.101110)_{2} \\
& =(1 \mathrm{D} 9 . \mathrm{B} 8)_{16}
\end{aligned}
$$

Q4. Perform the following arithmetic operations:
i. $(10011101)_{2}+(01010111)_{2}$
$=11110100$
ii. $(\mathrm{CA})_{16}-(\mathrm{AF})_{16}$

$$
=1 \mathrm{~B}
$$

Q5. Determine, in binary, hexadecimal and decimal, the smallest number and the largest number that can be stored in an 8-bit register.

Base	Decimal	Binary	Hexadecimal
Smallest	0	00000000	00
Largest	$2^{8}-1=255$	1111111	FF

Q6. Assuming that an 8-bit register contains the hexadecimal value C 6 representing a character, determine the character stored and type of parity used (i.e. even or odd parity). Note that the ASCII code of character ' A ' is 41 h and the ASCII code of character ' a ' is 61 h .
$\mathrm{C} 6=11000110$
Parity is even. ASCII code without parity bit is $01000110=46$. Thus, character stored is ' F '.

