COE 202, Term 112
 Digital Logic Design

Quiz\# 1

Date: Saturday, Feb. 11

Q1. Assume that a signal has a range of 0 to 10 volts. Suppose that we need to quantize the signal into a digital signal using only 4 different values. Determine these values and the maximum quantization error.

Step $=10 / 4=2.5$
Maximum quantization error: $10 / 8=1.25$
The four values are: $1.25,3.75,6.25,8.75$

Q2. Determine the decimal value of the following numbers:
i. $(11110101.011)_{2}$
$=245.375$
ii. $(3 \mathrm{E} .8 \mathrm{C})_{16}$

$$
=62.546875
$$

Q3. Represent the following numbers in binary and hexadecimal. Use as many bits as needed, and approximate the fraction to $\mathbf{4}$ binary digits:
i. $(500.6)_{10}$

$$
=(111110100.1001)_{2}
$$

$=(1 \mathrm{~F} 4.9)_{16}$
ii. $(654.37)_{8}$

$$
\begin{aligned}
& =(110101100.011111)_{2} \\
& =(1 \mathrm{AC} .7 \mathrm{C})_{16}
\end{aligned}
$$

Q4. Perform the following arithmetic operations:
i. $\quad(11001111)_{2}+(00111011)_{2}$

$$
\begin{array}{r}
11001111 \\
+\quad 00111011
\end{array}
$$

00001010 there will be a carry out
ii. $(\mathrm{E} 1)_{16}-(5 \mathrm{~F})_{16}$
E1
$-\quad 5 F$

82

Q5. Determine, in binary, hexadecimal and decimal, the smallest number and the largest number that can be stored in a 12-bit register.

	Decimal	Binary	Hexadecimal
Largest	2095	11111111111	FFF
Smallest	0	000000000000	000

Q6. Assuming that an 8-bit register contains the hexadecimal value E3 representing a character, determine the character stored and type of parity used (i.e. even or odd parity). Note that the ASCII code of character ' A ' is 41 h and the ASCII code of character ' a ' is 61 h .

11100011 => Parity is odd and ASCII code of character is $01100011=$ 'c'

