Name: KEY Id#

COE 202, Term 052 Fundamentals of Computer Engineering

Quiz#1

Date: Monday, Feb. 27

Q1. Represent the following numbers in **binary** and **hexadecimal**. Use as many bits as needed, and approximate the fraction to **4 binary digits**:

- i. (200.6)₁₀
 = (C8.9)₁₆
 = (11001000.1001)₂
- ii. $(54.5)_8$

$$=(101100.101)_2$$

= $(2C.A)_{16}$

- **Q2.** Assume that an 8-bit register contains the following number 10111000. Determine the content of the register assuming that it represents:
 - i. an unsigned number.

$$= 128+32+16+8=184$$

OR $= 255 - (64+7) = 255 -71 = 184$

ii. a 2's complement signed number.

```
2's complement of 10111000 = 01001000 = 64+8=72

\Rightarrow 10111000 represents -72
```

Q3. Perform the following operations assuming that numbers are represented using **8-bits** assuming **r's complement** representation, and determine if there is an **overflow** or not:

i.
$$(11101110)_2 + (11110111)_2$$

$$+ \frac{11101110}{11110111}$$

$$\frac{11100101}{11100101}$$
Cout = 1

There is no overflow since we are adding two negative numbers and we got a negative number. Also $Cin \oplus Cout = 0$.

ii.
$$(4C)_{16}$$
 - $(D0)_{16}$

=
$$(4C)_{16} + 16$$
's complement of $(D0)_{16}$
= $(4C)_{16} + (30)_{16} = (7C)_{16}$

There is no overflow since we are adding two positive numbers and we got a positive number.

Q4. Determine, in <u>binary</u> and <u>decimal</u>, the *smallest (negative)* number and the *largest (positive)* number that can be stored using the 2's complement notation, assuming *10-bit representation*.

	Binary	Decinal
Smallest (negative)	10 0000 0000	$=-2^9=-512$
Largest (Positive)	01 1111 1111	$=+(2^9-1)=+511$