COE 202, Term 151

 Digital Logic Design

 Digital Logic Design}

Quiz\# 1

Date: Sunday, Sep. 6, 2015

Q1. Determine the decimal value of the following numbers:
i. $(11011100.011)_{2}$
ii. $(2 \mathrm{~A} . \mathrm{C})_{16}$

Q2. Represent the following numbers in binary. Use as many bits as needed, and use only $\mathbf{4}$ binary digits to represent the fraction:
i. $(499.7)_{10}$
ii. (E3.5) ${ }_{16}$

Q3. Perform the following arithmetic operations in the given bases:

i. $\quad(01110111)_{2}+(\mathbf{0 1 0 1 1 0 1 1})_{2}$

ii. (A2) $\left.\mathbf{1 6}^{-(8 E}\right)_{16}$
iii. (5E) $\mathbf{1 6}^{*}$ * (32) ${ }_{16}$

Q4. Fill in the Spaces: (Show all work needed to obtain your answer)
a. Given that the base R number $(222)_{\mathrm{R}}$ is equal to $(62)_{10}$. Then the base $\mathrm{R}=$ \qquad .
b. The largest unsigned decimal value that can be expressed using 6 binary integer digits and 2 binary fractional digits is \qquad .
c. The number $\mathbf{5 3}$ is represented in $\mathbf{B C D}$ as \qquad .
d. Given that an 8-bit register stores the ASCII code of a character in the least significant 7 bits and a parity bit in the most significant bit. Assuming that the register contains the hexadecimal value C4 representing a character, the character stored in the register is \qquad and the parity used is
\qquad (i.e. even or odd parity). Note that the ASCII code of character 'A' is 41h and the ASCII code of character ' a ' is 61 h .

