COE 202, Term 142
 Digital Logic Design

Quiz\# 1

Date: Tuesday, Feb. 10, 2015

Q1. Assume that we would like to transmit four different values v1, v2, v3 and v4 using a voltage range from 0 to $\mathbf{1 2}$ volts. Determine the voltage values that will be used to represent these values with maximum noise tolerance. Determine the maximum noise tolerance achieved.

Q2. Determine the decimal value of the following numbers:
i. $(11110001.101)_{2}$
ii. (3E.E) ${ }_{16}$

Q3. Represent the following numbers in binary. Use as many bits as needed, and approximate the fraction to $\mathbf{4}$ binary digits:
i. $(416.4)_{10}$
ii. $(\mathrm{C} 2.3)_{16}$

Q4. Perform the following arithmetic operations:

i. $\quad(01101111)_{2}+(00111001)_{2}$

ii. (EA) $)_{16}-(\mathbf{A F})_{16}$
iii. $(\mathbf{4 A})_{16} *(32)_{16}$

Q5. Fill in the Spaces: (Show all work needed to obtain your answer)
a. The largest decimal value that can be expressed using 8 binary integer digits and 4 binary fractional digits is \qquad -.
b. The number $\mathbf{1 2 8}$ is represented in $\mathbf{B C D}$ as \qquad .
c. Given that an 8 -bit register stores the ASCII code of a character in the least significant 7 bits and a parity bit in the most significant bit. Assuming that the register contains the hexadecimal value E3 representing a character, the character stored in the register is \qquad and the parity used is
(i.e. even or odd parity). Note that the ASCII code of character 'A' is 41 h and the ASCII code of character ' a ' is 61 h .

