Name: Id#

COE 202, Term 141 Digital Logic Design

Quiz# 1

Q1. Assume that an analogue signal has a range of 0 to 10 volts. Suppose the quantize the analogue signal into a digital signal using only 4 different values. It values and the maximum quantization error.	

- **Q2.** Determine the **decimal** value of the following numbers:
 - i. (11110011.111)₂
 - ii. (4A.C)₁₆

- **Q3.** Represent the following numbers in **binary**. Use as many bits as needed, and approximate the fraction to **4 binary digits**:
 - i. (250.6)₁₀

ii. (EF.2)₁₆

Q4.	Perform	the	follo	wing	arithmetic	operations:

i.
$$(01101111)_2 + (00100111)_2$$

ii.
$$(8A)_{16} - (2B)_{16}$$

Q5. Fill in the Spaces: (Show all work needed to obtain your answer)

- a. The largest decimal value that can be expressed using 4 binary integer digits and 4 binary fractional digits is ______.
- b. The number **59** is represented in **BCD** as ______.
- c. Given that an 8-bit register stores the ASCII code of a character in the least significant 7 bits and a parity bit in the most significant bit. Assuming that the register contains the hexadecimal value C5 representing a character, the character stored in the register is ______ and the parity used is _____ (i.e. even or odd parity). Note that the ASCII code of character 'A' is 41h and the ASCII code of character 'a' is 61h.