Name: Id#

COE 202, Term 132 Digital Logic Design

Quiz# 1

Date:	Sunday	Feh	Q

Q1. Assume that an analogue signa	al has a range of 0	to 5 volts. Suppo	ose that we need t	o quantize
the analogue signal into a digital si	gnal using only 4	different values.	Determine these	values and
the maximum quantization error.				

- **Q2.** Determine the **decimal** value of the following numbers:
 - i. $(10110111.011)_2$
 - ii. (3F.A)₁₆

- **Q3.** Represent the following numbers in **binary**. Use as many bits as needed, and approximate the fraction to **4 binary digits**:
 - i. (191.4)₁₀

ii. (CE.5)₁₆

Q4.	Perform	the	follo	wing	arithmet	ic o	perations:
- ·							

i.
$$(01101011)_2 + (00110101)_2$$

ii.
$$(F8)_{16} - (AA)_{16}$$

iii.
$$(3B)_{16} * (29)_{16}$$

Q5. Fill in the Spaces: (Show all work needed to obtain your answer)

- a. The largest 2-digit hexadecimal number has the decimal value______
- b. The number **24** is represented in **BCD** as ______.
- c. Given that an 8-bit register stores the ASCII code of a character in the least significant 7 bits and a parity bit in the most significant bit. Assuming that the register contains the hexadecimal value E4 representing a character, the character stored in the register is ______ and the parity used is _____ (i.e. even or odd parity). Note that the ASCII code of character 'A' is 41h and the ASCII code of character 'a' is 61h.