COE 202, Term 121
 Digital Logic Design

Quiz\# 1

Date: Wednesday, Sep. 19

Q1. Assume that a signal has a range of 0 to 3 volts. Suppose that we need to quantize the signal into a digital signal using only 4 different values. Determine these values and the maximum quantization error.

Q2. Determine the decimal value of the following numbers:
i. $(11101110.101)_{2}$
ii. $(2 \mathrm{~A} .48)_{16}$

Q3. Represent the following numbers in binary and hexadecimal. Use as many bits as needed, and approximate the fraction to $\mathbf{4}$ binary digits:
i. $(1010.7)_{10}$
ii. $(731.56)_{8}$

Q4. Perform the following arithmetic operations:
i. $(10011101)_{2}+(01010111)_{2}$
ii. $(\mathrm{CA})_{16}-(\mathrm{AF})_{16}$

Q5. Determine, in binary, hexadecimal and decimal, the smallest number and the largest number that can be stored in an $\underline{8-b i t}$ register.

Q6. Assuming that an 8 -bit register contains the hexadecimal value C 6 representing a character, determine the character stored and type of parity used (i.e. even or odd parity). Note that the ASCII code of character ' A ' is 41 h and the ASCII code of character ' a ' is 61 h .

