COE 202, Term 112
 Digital Logic Design

Quiz\# 1

Date: Saturday, Feb. 11

Q1. Assume that a signal has a range of 0 to 10 volts. Suppose that we need to quantize the signal into a digital signal using only 4 different values. Determine these values and the maximum quantization error.

Q2. Determine the decimal value of the following numbers:
i. $(11110101.011)_{2}$
ii. $(3 \mathrm{E} .8 \mathrm{C})_{16}$

Q3. Represent the following numbers in binary and hexadecimal. Use as many bits as needed, and approximate the fraction to $\mathbf{4}$ binary digits:
i. $(500.6)_{10}$
ii. $(654.37)_{8}$

Q4. Perform the following arithmetic operations:
i. $(11001111)_{2}+(00111011)_{2}$
ii. $(\mathrm{E} 1)_{16}-(5 \mathrm{~F})_{16}$

Q5. Determine, in binary, hexadecimal and decimal, the smallest number and the largest number that can be stored in a 12-bit register.

Q6. Assuming that an 8-bit register contains the hexadecimal value E3 representing a character, determine the character stored and type of parity used (i.e. even or odd parity). Note that the ASCII code of character ' A ' is 41 h and the ASCII code of character ' a ' is 61 h .

