COE 202, Term 102

Fundamentals of Computer Engineering

HW# 5

- **Q.1.** Design a combinational circuit that detects an error in the representation of a decimal digit in BCD. In other words, obtain a logic diagram whose output is equal to 1 when the inputs contain any one of the six unused bit combinations in the BCD code.
- **Q.2.** Implement a full-adder using a dual 4x1 multiplexer.
- **Q.3.** It is required to design a 4-bit ripple-borrow subtractor to find the subtraction X-Y for the two unsigned numbers, $X=X_3-X_0$, and $Y=Y_3-Y_0$. Design a 1-bit full subtractor and show how it can be used to construct the 4-bit subtractor.
- **Q.4.** Design two simplified combinational circuits that generate the 9's complement of (a) a BCD digit and (b) an excess-3 digit. Then compare the gate and literal count of the two circuits. Assume in both cases that input combinations not corresponding to decimal digits give don't care outputs.
- **Q.5.** Construct a BDC adder-subtractor using a BCD adder and the 9's complement designed in Q3, as well as other logic or functional blocks as necessary. Use block diagrams for the components, showing only inputs and outputs where possible.
- **Q.6.** The D-latch shown below can be constructed with only four NAND gates. This can be done by removing the inverter and connecting the output of the upper NAND gate (connected to the D input) to the input of the lower NAND gate (Connected to D'). Use manual or computer-based logic simulation to verify that the new circuit is functionally the same as the original one.

- Q.7. Obtain the logic diagram of the D-latch give in Q6, using NOR gates only.
- **Q.8.** A popular alternative design for positive-edge-triggered D flip-flop is shown below. Simulate the circuit to determine that its functional behavior is identical to that of a D flip-flop.

- **Q.9.** Show the design of the following flip-flops using SR latches and external gates:
 - (i) A negative-edge triggered D-FF.
 - (ii) A negative edge-triggered JK-FF.
 - (iii) A positive-edge triggered T-FF.

Q.10. A sequential circuit with two D flip-flops A and B, two inputs X and Y, and one output Z is specified by the following input equations:

$$D_A = X^Y + X A$$

$$D_B = X B + X A$$

$$Z = B$$

- (i) Draw the logic diagram of the circuit.
- (ii) Derive the state table.
- (iii) Derive the state diagram.
- **Q.11.** A sequential circuit has one flip-flip Q, two inputs X and Y, and one output S. The circuit consists of a full adder circuit connected to a D flip-flop, as shown below. Derive the state table and state diagram of the sequential circuit.

Q.12. A sequential circuit has two JK flip-flops, one input X, and one output Y. The logic diagram of the circuit is shown below. Derive the state table and state diagram of the circuit.

HW#5

The output is 1 if the BCD code is in the range 1010 - 1111.

$$E = A_3 A_2 + A_3 A_1$$

= $A_3 (A_2 + A_1)$

92 Full adder

∂3

bi	Χį	Ji	b41	si
0	0	0	0	0_
0	٥	1	1	
0	١	0	0	1_
0	1	_ 1	0	0
1	٥	0	11	_1_
1	0	1		0_
1	1	0	0	5
1	1	1	1	t
-				

$$bi+1 = \overline{x_i} y_i + b_i \overline{x_i}$$

$$+ b_i y_i$$

$$= \overline{x_i} y_i + b_i (y_i + \overline{x_i})$$

24 915 complement

(a) BCD digit

Digit	X3 X2 X1 X0	93 AS 91 90
0	0000	1 0 0 1
	0001	1 000
2	0010	0 111
3	0 0 1 1	0 110
4	0 100	0 1 0 1
5	0 101	0 100
6	0 1 1 0	0 0 1 1
7	0 1 1 1	0 0 1 0
8	1000	0 0 0 1
9	1000	0 0 0 0

$$y_0 = \overline{x_0}$$
 , $y_1 = x_1$

$$\exists 2 = X_2 \overline{X_1} + \overline{X_2} X_1 \\
 = X_2 \oplus X_1$$

XXXXXX	00	01	11.	ю	
00	O	D	0	0	
01	٥	0	0	0	
IJ	×	×	X	X	
to	0	0	×	×	

$$y_3 = \overline{x}_3 \, \overline{x}_2 \, \overline{x}_1$$

(b) Excess-3 digit

मिलाव	*3 '	X2 X1	X٥	33	12 t	o6 1
0	0	0 1	.l	١	i	0 0
1	O	10	0	1	0	1 1
2	٥	10	1	1	0	1 0
3	•	1 1	0	1	٥	0 1
4	٥	11	L	1	6	0 0
5	1_	00	0	σ	1	1 1
6	1	0 0	١	0	1	10
7	1	0 1	0	0	1	0 1
8	١	0	1 1	0		00
9	1	1 •	0 0	ာ	၁	1 1

80 = \overline{x_0} , \delta_1 = \overline{x_1} , \delta_2 = \overline{x_2} , \delta_3 = \overline{x_3}

(c) we can see that for the excess-3 code,
the 91s complement circuit has 4 literals
and 4 inverter Baks. However, for the BCD

and one inverter, one NOR, and one XOR
gate- This is the advantage of using the

excess-3 code as the 91s complement is
abdained by finding the 11s complement of the

code.

96 Modified D-latch

17 D latch with NOR gates only

B Alternative positive-edge-triggered D flip-flop

(i) Negative-edge triggered D-FF

(ii) Negative-edge triggered JK-FF

(iii) Positive-edge triggered T-FF

$$D_A = \overline{x} \gamma + xA$$
, $D_B = \overline{x} B + xA$, $z = B$

(b) State Table:

	Next state				
Current State	×y=00	X3=01	xy = 10 AB	×3 = 11	outpul Z
00	00	10	00	00	0
0	0 1	11	0 0	00	1
10	00	10	11	11	0
11	01	11	11	11	

(c) State Diagram:

- * Note that this circuit has a moore model.
- we note that this

 circuit has several

 synchronizing sequence

 For example, {00,11}

 synchronizes It to

 state 00.

State Table:

<i>.</i>	rent State)n	put s	Next State	output
Cwi	7		J .—	7	S
-	0	0	0	0	0
	0	0	1	0	1
		1	<u> </u>	0	1
	0			1	0
				0	1
		0	0	1	0
		-		1	0
	1			1	1

State Diagram:

This circuit is a mealy model.

Note that this circuit has synchronizing sequence. For example, Eoo's synchronizes sequence. For example, Eoo's synchronizes the circuit to state.

It to the I state.

Q12 $J_A = B$, $K_A = \overline{B}$, $J_B = (A \oplus X)'$, $K_B = (A \oplus X)'$, $Y = A \oplus B \oplus X$

- 1	61 1 ₅	No. 11	Next	\$1.1.		FFs	mpu	75	output
	6tak B	X	A	B	AB	KA	8 B	KB	Υ
0	0	0	0	1	0	1	1	1	0
0	0	1	6	0	0	1	0	0	
•	1	0	١	0	1	0	1	1	
0			1	1	1	0	0	0	0
		0	0	0	0	1_	0	0	11
1	0		0	1	0	1	1	ı	0
1	0			1	1	0	0	0	0
1_				<u> </u>	1	Ö	1	1	1
1									

State Diagram ;

This circuit is a mealy model.

Notice that this circuit has no synchronizing sequence.