COE 202, Term 102

Fundamentals of Computer Engineering

HW\# 5

Q.1. Design a combinational circuit that detects an error in the representation of a decimal digit in BCD. In other words, obtain a logic diagram whose output is equal to 1 when the inputs contain any one of the six unused bit combinations in the BCD code.
Q.2. Implement a full-adder using a dual 4×1 multiplexer.
Q.3. It is required to design a 4-bit ripple-borrow subtractor to find the subtraction $X-Y$ for the two unsigned numbers, $X=X_{3}-X_{0}$, and $Y=Y_{3}-Y_{0}$. Design a 1-bit full subtractor and show how it can be used to construct the 4-bit subtractor.
Q.4. Design two simplified combinational circuits that generate the 9's complement of (a) a BCD digit and (b) an excess-3 digit. Then compare the gate and literal count of the two circuits. Assume in both cases that input combinations not corresponding to decimal digits give don't care outputs.
Q.5. Construct a BDC adder-subtractor using a BCD adder and the 9's complement designed in Q3, as well as other logic or functional blocks as necessary. Use block diagrams for the components, showing only inputs and outputs where possible.
Q.6. The D-latch shown below can be constructed with only four NAND gates. This can be done by removing the inverter and connecting the output of the upper NAND gate (connected to the D input) to the input of the lower NAND gate (Connected to D'). Use manual or computer-based logic simulation to verify that the new circuit is functionally the same as the original one.

Q.7. Obtain the logic diagram of the D-latch give in Q6, using NOR gates only.
Q.8. A popular alternative design for positive-edge-triggered D flip-flop is shown below. Simulate the circuit to determine that its functional behavior is identical to that of a D flip-flop.

Q.9. Show the design of the following flip-flops using SR latches and external gates:
(i) A negative-edge triggered D-FF.
(ii) A negative edge-triggered JK-FF.
(iii) A positive-edge triggered T-FF.
Q.10. A sequential circuit with two D flip-flops A and B, two inputs X and Y, and one output Z is specified by the following input equations:
$\mathrm{D}_{\mathrm{A}}=\mathrm{X}^{\prime} \mathrm{Y}+\mathrm{XA}$
$\mathrm{D}_{\mathrm{B}}=\mathrm{X}^{\prime} \mathrm{B}+\mathrm{XA}$
$\mathrm{Z}=\mathrm{B}$
(i) Draw the logic diagram of the circuit.
(ii) Derive the state table.
(iii) Derive the state diagram.
Q.11. A sequential circuit has one flip-flip Q, two inputs X and Y, and one output S. The circuit consists of a full adder circuit connected to a D flipflop, as shown below. Derive the state table and state diagram of the sequential circuit.

Q.12. A sequential circuit has two JK flip-flops, one input X , and one output Y . The logic diagram of the circuit is shown below. Derive the state table and state diagram of the circuit.

HW=\#5

Q1 The output is 1 if the $B C D$ code is in the range $1010-1111$.

$$
\begin{aligned}
E & =A_{3} A_{2}+A_{3} A_{1} \\
& =A_{3}\left(A_{2}+A_{1}\right)
\end{aligned}
$$

Q2 Full adder

Q_{3}

$$
\begin{aligned}
& b_{i} \\
& \hline 0 \\
& \hline 0 \\
& x_{i}
\end{aligned} y_{i} \quad b_{i+1} \quad s_{i} .
$$

$$
\left.\begin{array}{rl}
b_{i} \stackrel{x}{i}+_{x_{i}}^{0} 0 & 01 \\
0 & 1 \\
\hline & 1 \\
\hline 1 & 0
\end{array} \right\rvert\,
$$

Q4 9's complement
(a) BCD digit

Digit	x_{3}	x_{2}	x_{1}	x_{0}	y_{3}	y_{2}	y_{1}	y_{0}
0	0	0	0	0	1	0	0	1
1	0	0	0	1	1	0	0	0
2	0	0	1	0	0	1	1	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	0	1
5	0	1	0	1	0	1	0	0
6	0	1	1	0	0	0	1	1
7	0	1	1	1	0	0	1	0
8	1	0	0	0	0	0	0	1
9	1	0	0	0	0	0	0	0

$y_{0}=\overline{x_{0}}, \quad y_{1}=x_{1}$

$y_{2}=x_{2} \bar{x}_{1}+\bar{x}_{2} x_{1}$
$=x_{2} \oplus x_{1}$

-3-
(b) Excess -3 digit

Digit	x_{3}	x_{2}	x_{1}	x_{0}	y_{3}	y_{2}	y_{1}	y_{0}
0	0	0	1	1	1	1	0	0
1	0	1	0	0	1	0	1	1
2	0	1	0	1	1	0	1	0
3	0	1	1	0	1	0	0	1
4	0	1	1	1	1	0	0	0
5	1	0	0	0	0	1	1	1
6	1	0	0	1	0	1	1	0
7	1	0	1	0	0	1	0	1
8	1	0	1	1	0	1	0	0
9	1	1	0	0	0	0	1	1

$$
\begin{aligned}
& y_{0}=\bar{x}_{0}, \quad y_{1}=\bar{x}_{1}, \quad y_{2}=\bar{x}_{2}, \quad y_{3}=\overline{x_{3}}
\end{aligned}
$$

(c) we can see that for the excess -3 code, the is complement circuit has 4 literals and 4 inverter gates. However, for the BCD code, the $9^{\prime \prime}$ complement circuit has 9 likeral and one inverter, one NOR, and one $x \circ R$ gate. This is the advantage of using the excess -3 code as the 91s complement is obtained by finding the 1 's complement of the code.

Q5 BCD Adder - Subtractor

Q6 Modified D-latch

27 D latch with NOR gates only

Q8 Alternative positive-edge-triggered D flip-flop

29
(i) Negative-edge friggered D-FF

(ii) Negative-edge triggered JK-FF

(iii) Positive-edge triggered T-FF

210

$$
D_{A}=\bar{x} \gamma+x_{A}, \quad D_{B}=\bar{x} B+x_{A}, \quad z=B
$$

(a)

(b) State Table:

	Next state				
Current state	$x y=00$	$x y=01$	$x y=10$	$x y=11$	output
$A B$	z				
00	00	10	00	00	0
01	01	11	00	00	1
10	0	0	10	11	11
11	01	11	11	11	1
10					

(c) State Diagram:

* Note that this circuit has
a moore model.
* Note that this circuit has several synchronizing sequence For example, $\{00,11\}$ synchronizes it to
state oo. state 00 .

QI

$$
\begin{aligned}
& D_{z}=x y+x z+y z \\
& \delta=x \Theta y(4)
\end{aligned}
$$

State Table:

Current state	inputs	Next state	output	
z	x	y	z	5
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

State Diagram:

This circuit is a mealy model.
Note that this circuit has synchronizing sequence. For example, $\{00\}$ synchronizes Me circuit to state 0 . Also, \{11\} synchronizes it to the 1 state.

Q12

$$
J_{A}=B, K_{A}=\bar{B}, \delta_{B}=(A \oplus x)^{\prime}, K_{B}=(A \oplus x)^{\prime}, Y=A \oplus B \oplus x
$$

State Diagram;

This circuit is a mealy model.
Notice Khat this circuit has no synchronizing sequence.

