COE 202, Term 052

Fundamentals of Computer Engineering

HW\# 2

Q.1. Prove the identity of each of the following Boolean functions using algebraic manipulation:
(i) $\mathrm{A}^{`}+\mathrm{AB}+\mathrm{AC}^{`}+\mathrm{AB}^{`} \mathrm{C}^{`}=\mathrm{A}^{`}+\mathrm{B}+\mathrm{C}^{`}$
(ii) $(\mathrm{A}+\mathrm{B}+\mathrm{D})\left(\mathrm{A}^{`}+\mathrm{C}\right)(\mathrm{B}+\mathrm{C}+\mathrm{D})=(\mathrm{A}+\mathrm{B}+\mathrm{D})\left(\mathrm{A}^{`}+\mathrm{C}\right)$
(iii) XZ + WY`Z + W`YZ + WX`Z \(=X Z+W Y^{`} Z^{`}+W^{`} X Y+X^{`} Y Z `\)
Q.2. Simplify the following Boolean expressions to a minimum number of literals using algebraic manipulation:
(i) $\mathrm{W}^{`} \mathrm{X}\left(\mathrm{Z}^{`}+\mathrm{Y}^{`} \mathrm{Z}\right)+\mathrm{X}\left(\mathrm{W}+\mathrm{W}^{`} \mathrm{YZ}\right)$
(ii) $\left[(C D)^{`}+A\right]^{`}+A+C D+A B$
(iii) $\left(\mathrm{A}+\mathrm{B}^{`}+\mathrm{AB}^{`}\right)\left(\mathrm{AB}+\mathrm{A}^{`} \mathrm{C}+\mathrm{BC}\right)$
Q.3. Find the complement of the following Boolean functions and reduce them to a minimum number of literals:
(i) $\mathrm{WX}\left(\mathrm{Y}^{`} \mathrm{Z}+\mathrm{YZ} \mathrm{Z}^{`}\right)+\mathrm{W}^{`} \mathrm{X}^{`}\left(\mathrm{Y}^{`}+\mathrm{Z}\right)\left(\mathrm{Y}^{\prime}+\mathrm{Z}^{`}\right)$
(ii) $\mathrm{ABC}+\mathrm{A}^{`} \mathrm{CD}$
Q.4. Using DeMorgan`s theorem, express the function \(F=A ` B `+A B+B ` C\)
(i) With only OR and complement operations.
(ii) With only AND and complement operations.
Q.5. Show that the dual of the equivalence function $F(A, B)=A ` B `+A B$ is equal to its complement.
Q.6. A majority gate is a digital circuit whose output is equal to 1 if the majority of inputs are 1 `s. The output is 0 otherwise. (i) By means of a truth table, find the Boolean function implemented by a 3input majority gate. (ii) Express the 3-input majority gate as a sum of minterms and a product of maxterms. Q.7. Express the following functions in a sum of minterms and a product of maxterms : (i) \(\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=(\mathrm{XY}+\mathrm{Z})(\mathrm{Y}+\mathrm{XZ})\) (ii) \(\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{D}\left(\mathrm{A}^{`}+\mathrm{B}\right)+\mathrm{B}^{`} \mathrm{D}\)

HW=\#2

QI
(i) $\bar{A}+A B+A \bar{C}=\bar{A}+B+\bar{C}$

$$
\begin{array}{rlrl}
\bar{A}+A B+A \bar{C} & =A+B+\bar{C} \\
\bar{A}+A B+A \bar{C} & =(\bar{A}+A) \cdot(\bar{A}+B)+A \bar{C} & & \text { by distributivity } \\
& =1 \cdot(\bar{A}+B)+A \bar{C} & & \text { by complement } \\
& =\bar{A}+B+A \bar{C} & & \text { by identity } \\
& =(\bar{A}+A) \cdot(\bar{A}+\bar{C})+B & & \text { by distributivity } \\
& =1 \cdot(\bar{A}+\bar{C})+B & & \text { by complement } \\
& =\bar{A}+\bar{C}+B & & \text { by identity } \\
& =\bar{A}+B+\bar{C} & & \text { by commutative. }
\end{array}
$$

(ii) $\quad(A+B+D)(\bar{A}+C)(B+C+D)=(A+B+D)(\bar{A}+C)$
we can prove that this identity is true by proving that its dual is true. The dual of this identity is $A B D+\bar{A} C+B C D=A B D+\bar{A} C$
$A B D+\bar{A} C+B C D$ is equal to $A B D+\bar{A} C$ by the consensus theorem. Let $X=B D$, then $A x+\bar{A} C+X C=A X+\bar{A} C$ by consensus
(iii) $\quad x z+w \bar{\gamma} \bar{z}+\bar{w} \gamma \bar{z}+w \bar{x} \bar{z}=x z+w \bar{y} \bar{z}+\bar{w} x y+\bar{x} y \bar{z}$

$$
\begin{aligned}
x_{2}+w \bar{y} \bar{z}+\bar{w} \gamma \bar{z}+w \bar{x} \bar{z}= & x z+w \bar{y} \bar{z}+\bar{w} \gamma \bar{z} \\
& +w \bar{x} \bar{z}+x \bar{w} \gamma
\end{aligned}
$$

This is because $x \bar{z}+\bar{w} y \bar{z}=x \underline{z}+\bar{w} \gamma \overline{\underline{z}}+x \bar{w} y$ by consensus
$=x z+w \bar{\gamma} \bar{z}+\bar{w} \gamma \bar{z}+w \bar{x} \bar{z}+x \bar{w} \gamma+\bar{x} r \bar{z}$
This is also by consensus since $\overline{\underline{w}} Y \bar{z}+\underline{w} \bar{x} \bar{z}$
$=\bar{w} \gamma \bar{z}+w \bar{x} \bar{z}+\bar{x} \gamma \bar{z}$

$$
=x z+w \bar{y} \bar{z}+w \bar{x} \bar{z}+x \bar{w} y+\bar{x} \sqrt{\bar{z}}
$$

$$
\text { since } \underline{x} \bar{w} \gamma+\bar{x} \gamma \bar{z}+\bar{w} \gamma \bar{z}=x \bar{w} \gamma+\bar{x} \gamma \bar{z} \text { by consensus }
$$

$$
\begin{aligned}
&=x \bar{z}+w \bar{z}+x \bar{w} \gamma+\bar{x} y \bar{z}=\text { RUS } \\
&=x \bar{y} \\
&=w \bar{x} \bar{z}+\bar{x} y \bar{z}=w \bar{y}
\end{aligned}
$$

$$
\begin{aligned}
& =x z+w \bar{y} \bar{z}+x w \bar{x}+x y \\
& \text { since } w \bar{y} \bar{z}+w \bar{x} \bar{z}+\bar{x} \underline{\underline{y}} \bar{z}=w \bar{y} \bar{z}+\bar{x} y \bar{z}
\end{aligned}
$$

Q2 (i) $\bar{w} x(\bar{z}+\bar{\gamma} z)+x(w+\bar{w} y z)$

$$
\begin{aligned}
& =\bar{w} \times(\bar{z}+\bar{y})+x(w+y z) \\
& =\bar{w} \times \bar{z}+\bar{w} \times \bar{y}+x w+x y z \\
& =x(w+\bar{w} \bar{z})+\bar{w} x \bar{y}+x y z \\
& =x(w+\bar{z})+\bar{w} \times \bar{y}+x y z \\
& =x w+x \bar{z}+\bar{w} \times \bar{y}+x y z \\
& =x(w+\bar{w})+x(\bar{z}+y z) \\
& =x(w+\bar{y})+x(\bar{z}+y) \\
& =x w+x \bar{y}+x \bar{z}+x y \\
& =x(\bar{y}+y)+x w+x \bar{z} \\
& =x+x w+x \bar{z} \\
& =x
\end{aligned}
$$

(ii) $\left[(C D)^{\prime}+A\right]^{\prime}+A+C D+A B$

$$
\begin{aligned}
& =C D \bar{A}+A+C D+A B \\
& =C D+A+A B \\
& =C D+A
\end{aligned}
$$

(iii) $(A+\bar{B}+A \bar{B})(A B+\bar{A} C+B C)$

$$
\begin{aligned}
& =A B+A B C+\bar{A} \bar{B} C \\
& =A B+\bar{A} \bar{B} C
\end{aligned}
$$

5 literals

Qu

$$
\text { (i) } \quad w x(\bar{y} z+\gamma \bar{z})+\bar{w} \bar{x}(\bar{y}+z)(\gamma+\bar{z})
$$

$$
=w x \bar{y}+w x y \bar{z}+\bar{w} \bar{x}(\bar{y} \bar{z}+z y)
$$

$$
=w \times \bar{y} z+w \times y \bar{z}+\bar{w} \bar{x} \bar{y} \bar{z}+w \bar{x} z p
$$

$$
\begin{aligned}
& \text { wxyz+wxyz+wxyt+wx=1} \\
& \text { If can be seen that this expression can not } \\
& \text { be simplified }
\end{aligned}
$$

be simplified

$$
\begin{aligned}
& \text { be simplified } \\
& =w x(\bar{y} z+y \bar{z})+\bar{w} \bar{x}(\bar{y} \bar{z}+y z)
\end{aligned}
$$

The complement of this function is:
$=[w x(\bar{z}+\gamma \bar{z})+\bar{w} \bar{x}(\bar{\gamma} \bar{z}+\gamma z)]$
$=\left[(w x)^{\prime}+(\bar{\gamma} z+\gamma \bar{z})^{\prime}\right]\left[(\bar{w} \bar{x})^{\prime}+(\bar{\gamma} \bar{z}+\gamma z)^{\prime}\right]$
$=[\bar{w}+\bar{x}+(\gamma+\bar{z})(\bar{\gamma}+z)][w+x+(\gamma+z)(\bar{\gamma}+\bar{z})]$
$=[\bar{w}+\bar{x}+y z+\bar{y} \bar{z}][w+x+y \bar{z}+\bar{y} z]$
(ii) $A B C+\bar{A} C D$

$$
=[A B+\bar{A} D] \cdot C
$$

The complement of this function is

$$
=[[A B+\bar{A} D], C]^{\prime}
$$

$$
=[(\bar{A}+\bar{B})(A+\bar{D})]+\bar{C}
$$

$$
=\bar{A} \bar{D}+A \bar{B}+\bar{C} \quad 5 \text { interals }
$$

Q4 $\quad F=\bar{A} \bar{B}+A B+\bar{B} C$
(i) with only $O R$ and complement operations

$$
\begin{aligned}
F & =(\bar{A} \bar{B})^{\prime \prime}+(A B)^{\prime \prime}+(\bar{B} C)^{\prime \prime} \\
& =(A+B)^{\prime}+(\bar{A}+\bar{B})^{\prime}+(B+\bar{C})^{\prime}
\end{aligned}
$$

(ii) with only AND and complement operations

$$
\begin{aligned}
F & =[\bar{A} \bar{B}+A B+\bar{B} C]^{\prime \prime} \\
& =\left[(\bar{A} \bar{B})^{\prime} \cdot(A B)^{\prime} \cdot(\bar{B} C)^{\prime}\right]^{\prime}
\end{aligned}
$$

Q5 $\quad F=\bar{A} \bar{B}+A B$
The dual of the function $F^{d}=(\bar{A}+\bar{B})(A+B)$
The complement of the function $\bar{F}=[\bar{A} \bar{B}+A B]^{\prime}$

$$
=(A+B) \cdot(\bar{A}+\bar{B})
$$

Thus, $\bar{F}=F^{d}$
Q6 (i) 3-input majority gate

A	B	C	M
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
$M(A, B, C)=\sum(m 3, m 5, m 6, m 7)$			

(ii)

$$
\begin{aligned}
\frac{1}{M(A, B, C)} & =\sum(m 3, m 5, m 6, m 7) \\
& =\bar{A} B C+A \overline{B C}+A B \bar{C}+A B C \\
M(A, B, C) & =\Pi\left(M_{0}, M 1, M_{2}, M_{4}\right) \\
& =(A+B+C)(A+B+\bar{C})(A+\bar{B}+C)(\bar{A}+B+C)
\end{aligned}
$$

Q7 (c)

$$
\begin{aligned}
F(x, y, z) & =(x y+z)(\gamma+x z) \\
& =x \gamma+x \gamma z+\gamma z+x z \\
& =x y+x z+\gamma z \\
& =x \gamma(z+\bar{z})+x z(y+\bar{\gamma})+\gamma z(x+\bar{x}) \\
& =x \gamma z+x y \bar{z}+x y z+x \bar{y} z+x y z+\bar{x} y z \\
& =x \gamma z+x \gamma \bar{z}+x \bar{y} z+\bar{x} y z \\
& =\sum(m 3, m 5, m 6, m z) \\
& =\prod\left(M_{0}, M_{1}, M 2, M 4\right) \\
& =(x+y+z)(x+\gamma+\bar{z})(x+\bar{\gamma}+z)(\bar{x}+\gamma+z)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
F(A, B, C, D)= & D(\bar{A}+B)+\bar{B} D \\
= & \bar{A} D+B D+\bar{B} D \\
= & \bar{A} D(C+\bar{C})+B D(A+\bar{A})+\bar{B} D(A+\bar{A}) \\
= & \bar{A} B D+\bar{A} \bar{B} D+A B D+\bar{A} B D+A \bar{B} D+A \bar{B} D \\
= & \bar{A} B D+\bar{A} \bar{B} D+A B D+\bar{A} \bar{B} D \\
= & \bar{A} B D(C+\bar{C})+\bar{A} \bar{B} D(C+\bar{C})+ \\
& A B D(C+\bar{C})+A \bar{B} D(C+\bar{C}) \\
= & \bar{A} B C D+\bar{A} B \bar{C} D+\bar{A} \bar{B} C D+\bar{A} \bar{B} \bar{C} D \\
& +A B C D+A B \bar{C} D+A \bar{B} C D+\lambda \bar{B} \bar{C} D \\
= & \sum\left(m 1, m_{3}, m 5, m 7, m 9, m 11, m_{13}, m 15\right) \\
= & \Pi\left(M 0, M 2, M 4, M 6, M 1, M_{10}, M 12, M_{14}\right) \\
= & (A+B+C+D)(\bar{A}+B+\bar{C}+D)(A+\bar{B}+C+D) \\
& (A+\bar{B}+\bar{C}+D)(\bar{A}+B+C+D)(\bar{A}+B+\bar{C}+D) \\
& (\bar{A}+\bar{B}+C+D)(\bar{A}+\bar{B}+\bar{C}+0)
\end{aligned}
$$

