COE 202, Term 052

Fundamentals of Computer Engineering

HW# 1

- **Q.1.** Convert the following numbers from the given base to the bases indicated:
 - (i) Decimal 225.225 to binary, octal, and hexadecimal.
 - (ii) Binary 11010111.110 to decimal, octal, and hexadecimal.
 - (iii) Octal 623.77 to decimal, binary and hexadecimal.
 - (iv) Hexadecimal 2AC5.D to decimal, octal and binary.
- **Q.2.** Perform the following arithmetic operations using the designated bases without converting to decimal. Verify your result by converting the numbers to decimal and then performing the operation in decimal:
 - (i) $(10E)_{16} + (13F)_{16}$
 - (ii) $(1E)_{16} * (10)_{16}$
 - **(iii)** $(1101)_2 * (1000)_2$
- **Q.3.** Obtain the 1's and 2's complement of the following binary numbers: 01100, 00001,00000
- **Q.4.** Find the 10's complement of $(935)_{11}$.
- **Q.5.** Show how the decimal integer -120 would be represented in 2`s complement notation using 8 bits and 16 bits, respectively.
- **Q.6.** Perform subtraction with the following binary numbers using 2's complement and 1's complement, assuming that numbers are represented in 6 bits. Check the answer by straight subtraction:
 - (i) 11010 1101
 - (ii) 11010 10000
 - (**iii**) 10010 10011
- **Q.7.** A microcontroller uses 8-bit registers. Give the following in both binary and decimal:
 - (i) The maximum unsigned number that can be stored.

- (ii) The smallest (negative) number and the largest (positive) number that can be stored using the sign-magnitude notation.
- (iii) The smallest (negative) number and the largest (positive) number that can be stored using the 2^s complement notation.

COE 200

₩₩#1 ₩₩#1

QI (2) 225.225

Binary 1110 0001 • 00 11 100 1 +061 octal 341 • 163 --Hexadecimal E1 • 399-

(22)	Binary	11010111.110	
	Decimal	215 .75	
	octal	327,6	
	Hexadecimal	07.c	

(cii)	octal	623,77	
	Decimal	403 • 98437	
	Binary	110 010 011. 111 111	

(20) Hexadecimal 2AC5.D Decimal 10949, B125 Binary 0010 1010 1100 0101.1101 Octal 25305.64

-1-

(ii)	I E	30
	* 10	* 16
	00 1E 1E0	180
(117	1101	2 13
	0000	104
)	01	

Q 3

-

Number	1's complement	2's Complement
• 1100	001	10100
0000)	11116	1111
00000	1 3 1 3 1	0000

84

$$Complement of (935)_{11} = 175$$

10's

- 2-

Q5 -120 We represent +120 USF g 8-bits 76543210 01111000 2's complement is 10001000 -120 represented in 16 bits will be just a sign extension of 8-bit representation 1111 1111 1000 1000

96

(i)
$$11010 - 1101$$

11s complement stranght subtraction
 $011010 - 100$
 $110010 - 100$
 $1 - 10010$
 $1 - 100101$
 $1 - 10010$
 $2's complement$
 011010
 $1 - 10011$
 $0 - 01101$
 $0 - 01101$

- 3-

$$215$$
 complement
 0 11010
 $+$ 110000
 0 + 0 0 10

(111) 10010 - 10011

1's complement straight subtraction 010010 + 101100 This represents -1 represents -1 represents -1 represents represents
<math>represents represents
<math>represents represents
<math>represents represents
<math>represents represents
<math>represents represents
<math>represents represents
<math>represents
<math>represents represents
<math>represents
<math>represents
<math>represents

97 8-bit register

r

(i) maximum unsigned number

$$8 = 1 = 255$$
 1111 1111

.

(11)
$$sign - magnifiede$$

 $smallest$ negative number
 $-(2-1) = -127$ [111 111]
largest possitive number
 $27-1 = +127$ 0 [11 111]

(iii) 21s complement
Smallest negative number

$$-\frac{8}{2} = -\frac{7}{2} = -128$$
 1000 0000
largest possitive number
 $+\frac{7}{2} - 1 = 127$ 0111 1111

- 5-