## COE 202, Term 052

## Fundamentals of Computer Engineering

## HW\# 1

Q.1. Convert the following numbers from the given base to the bases indicated:
(i) Decimal 225.225 to binary, octal, and hexadecimal.
(ii) Binary 11010111.110 to decimal, octal, and hexadecimal.
(iii) Octal 623.77 to decimal, binary and hexadecimal.
(iv) Hexadecimal 2AC5.D to decimal, octal and binary.
Q.2. Perform the following arithmetic operations using the designated bases without converting to decimal. Verify your result by converting the numbers to decimal and then performing the operation in decimal:
(i) $(10 \mathrm{E})_{16}+(13 \mathrm{~F})_{16}$
(ii) $(1 \mathrm{E})_{16} *(10)_{16}$
(iii) $(1101)_{2} *(1000)_{2}$
Q.3. Obtain the 1`s and 2`s complement of the following binary numbers: 01100, 00001,00000
Q.4. Find the 10 `s complement of (935) \()_{11}\). Q.5. Show how the decimal integer -120 would be represented in 2 s complement notation using 8 bits and 16 bits, respectively. Q.6. Perform subtraction with the following binary numbers using 2 `s complement and 1 `s complement, assuming that numbers are represented in 6 bits. Check the answer by straight subtraction: (i) 11010-1101 (ii) 11010-10000 (iii) 10010-10011 Q.7. A microcontroller uses 8-bit registers. Give the following in both binary and decimal: (i) The maximum unsigned number that can be stored. (ii) The smallest (negative) number and the largest (positive) number that can be stored using the sign-magnitude notation. (iii) The smallest (negative) number and the largest (positive) number that can be stored using the 2`s complement notation.

## HW\#1

$Q 1$
(i) 225.225

Binary $\quad 11100001.0011100 \mid t 001$
octal
$341.163 \ldots$
Hexadecimal EI. $399 \ldots$
(ii) Binary 11010111.110

Decimal 215.75
octal
327.6

Hexadecimal
D7.C
(ri) octal 623.77
Decimal $403.98437 \ldots$
Binary 110010011.111111
(iv) Hexadecimal $2 A C 5 . D$

Decimal 10949.8125
Binary 0010101011000101.1101
octal 25305.64
$-1-$


Q3 | Number | I's complement | 2's complement |
| :---: | :---: | :---: |
| 01100 | 10011 | 10100 |
| 00001 | 11110 | 11111 |
| 00000 | 11111 | 00000 |

$Q_{4}$ to's complement of (935) 11 $=175$

$$
\begin{array}{r}
101010 \\
-935 \\
\hline 175
\end{array}
$$

$$
-2-
$$

QL $\quad-120$
we represent +120 ussr g 8 -bits
$\begin{array}{llllllll}7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
01111000
2's complement is $\quad 10001000$
-120 represented in 16 bits will be just
a sign extension of q-bit representation
1111111110001000

96

$$
\begin{aligned}
& \text { (i) } \\
& 11010-1101 \\
& +110010 \\
& \text { - } 1101 \\
& \text { (1) } \sim 001100 \\
& 001101 \\
& \rightarrow \frac{1}{001101} \text { we add the }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2's complement } \\
& \begin{array}{llll}
1 & & 1 & \\
0 & 1 & 1 & 0
\end{array} \\
& +\frac{110011}{001101} \\
& \text { (1) } 001101
\end{aligned}
$$

$$
\text { (ii) } 11010-10000
$$

$$
\begin{aligned}
& \text { lis complement } \\
& \begin{array}{llll}
1 & 1 & 1 & \\
0 & 1 & 0 & 10
\end{array} \\
& +101111 \\
& \begin{array}{l}
\text { (1) } 6001001 \\
+\frac{1 \leftarrow \text { we add the }}{001010} \text { carry out }
\end{array} \\
& \text { - } 11010 \\
& -\frac{010000}{001010}
\end{aligned}
$$

$$
\begin{array}{r}
\text { is complement } \\
1 \\
+11010 \\
+\quad 110000 \\
\hline 0<001010
\end{array}
$$

(IIi) $10010-10011$

$$
\begin{aligned}
& \text { i's complement } \\
& 010010 \\
& +\frac{101100}{111110} \\
& \text { Til represents }-1 \\
& \text { 2's complement } \\
& \text { - } 10010 \\
& +\frac{101101}{111111} \\
& \text { This represents }-1 \\
& \text { straight subtraction } \\
& \begin{array}{llll}
1 \\
0 & 0 & 1 & 1 \\
0 & 0^{2} & \times 0^{2}
\end{array} \\
& -\frac{010011}{111111} \\
& \text { Note here that there } \\
& \text { is a borrow }
\end{aligned}
$$

Q7 8-bit register
(i) maximum unsigned number

$$
2_{2}^{8}-1=255 \quad 11111111
$$

(ii) sign -magnitude
smallest negative number

$$
-(2-1)=-127 \quad 1111 \quad 1111
$$

largest positive number

$$
2^{7}-1=+127 \quad 01111111
$$

(iii) 2's complement
smallest negative number

$$
-2^{8-1}=-2^{7}=-128 \quad 10000000
$$

largest positive number

$$
+2^{7-1}=127 \quad 01111111
$$

