\title{

KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS \\ COLLEGE OF COMPUTER SCIENCES \& ENGINEERING

\title{

COMPUTER ENGINEERING DEPARTMENT

COMPUTER ENGINEERING DEPARTMENT
 COE 202 Digital Logic Design Syllabus - Term 121

Catalog Description

Introduction to Computer Engineering. Digital Circuits. Boolean algebra and switching theory. Manipulation and minimization of Boolean functions. Combinational circuit analysis and design, multiplexers, decoders, adders. Sequential circuit analysis and design, basic flip-flops, clocking, and edge-triggering, registers, counters, timing sequences, state assignment and reduction techniques. Register transfer level operations. Machine-level programming.

Prerequisite: PHYS 102
Instructor Dr. Aiman H. El-Maleh. Room: 22/407-5 Phone: 2811
Email: aimane@kfupm.edu.sa

Office Hours SUTW 12:20-1:00 PM and by appointment

Course Learning Outcomes

1. Ability to use math and Boolean algebra in performing computations in various number systems and simplification of Boolean algebraic expressions.
2. Ability to design efficient combinational and sequential logic circuit implementations from functional description of digital systems.
3. Ability to use CAD tools to simulate and verify logic circuits.

Course Material

1. Textbook Morris Mano and Charles Kime, Logic and Computer Design Fundamentals, Third Edition, Prentice Hall International, 2004.
2. Course CD A CD containing all course lectures with animations and sound is available. The material can be downloaded from ftp://rahma.ccse.kfupm.edu.sa/export/tools/material/On\ Line\ Course\ Material. The material is divided into 6 units with several lessons in each unit.

Grading Policy

Discussions 5\%
Assignments 10\%
Quizzes 10\%
Exam I 20\% (Thur. Oct. 4, 2012, 1:00 PM)
Exam II 25\% (Thur. Nov. 22, 2012, 1:00 PM)
Final 30\%

- Attendance will be taken regularly. For each missed 3 classes, a penalty of 0.5 will be deducted.
- Excuses for officially authorized absences must be presented no later than one week following resumption of class attendance.
- Late assignments will be accepted but you will be penalized 10% per each late day.
- A student caught cheating in any of the assignments will get 0 out of 10%.
- No makeup will be made for missing Quizzes or Exams.

Course Topics

Week	Topic
1	- Introduction. Information Processing and representation. Digital vs. Analog quantities. - Weighted Number Systems. Decimal, Binary, Octal and Hexadecimal. - Arithmetic in Binary and Hex (addition, subtraction\& Multiplication), Number base conversion (Dec to Bin, Oct, and Hex).
2	- BCD Codes: Excess-3 \& other BCD codes, Parity Bits. - Binary logic and gates, Truth tables, Boolean Algebra, Basic identities. Principle of duality. - DeMorgan's Theorem. - Manipulation of Boolean expressions. - Gate Implementation of Boolean expressions
3	- Canonical and Standard forms, Minterms, Maxterms, Sum of products \& Products of Sums. - 2-Level gate implementation (SOP, POS). - From Truth tables to Boolean Expressions. - Physical properties of gates: fan-in, fan-out, propagation delay. Timing diagrams. Tri-state drivers.
4-5	- Map method of simplification: 2, 3 and 4-variable maps. Implicants, Prime Implicants, Essential Prime Implicants. - POS simplification. - Don't care conditions and simplification. - Universal gates (NAND, NOR) - Implementation using Nand and NOR gates: 2-level \& Multilevel implementation. - Exclusive-OR (XOR) and Equivalence (XNOR) gates, Odd and Even Functions, Parity generation and checking.
6-7	- Combinational Circuit Design Procedure \& Examples. - Code Converter. - BCD to 7-Segment Display Conversion. - Half and Full Adders. - Ripple Carry Adder design and Delay analysis of RCA - Signed Numbers: sign-magnitude, 1`s complement, and 2`s complement. - Signed Binary Arithmetic. (Addition and Subtraction). - Binary Adder-Subtractor. - Carry Look-ahead adder. - Delay analysis
8-9	- Decoders $2 \times 4,3 \times 8,4 \times 16$. Designing large decoders from smaller decoders. Function implementation using decoders. - Encoders: Priority Encoders. - Multiplexers: $2 \times 1,4 \times 1$. Constructing large MUXs from smaller ones. - Function implementation using multiplexers.

	\bullet	Magnitude Comparator
	\bullet	MSI Design Examples

