COMPUTER ENGINEERING DEPARTMENT

COE 202

FUNDAMENTALS OF COMPUTER ENGINEERING

Major Exam I

Second Semester (052)
Time: 7:30-9:30 PM

Student Name : \qquad

Student ID. : \qquad

Question	Max Points	Score
Q1	$\mathbf{2 5}$	
Q2	$\mathbf{1 8}$	
Q3	$\mathbf{1 2}$	
Q4	$\mathbf{2 0}$	
Q5	$\mathbf{2 5}$	
Total	$\mathbf{1 0 0}$	

(Q1) Indicate whether the following is true or false, and if it is false correct it:
(1) (True, False) The hexadecimal number (421) $)_{16}$ is equal to the octal number $(841)_{8}$.
(2) (True, False) The binary number $(1110.0111)_{2}$ is equal to $(14.875)_{10},(\text { E. } 7)_{16}$ and $(16.7)_{8}$.
(3) (True, False) The 16`s complement of the hexadecimal number (B 120\()_{16}\) is \((4 \mathrm{EE} 0)_{16}\) while the 15 's complement is \((4 \mathrm{ED} 0)_{16}\). (4) (True, False) Assuming 6-bit representation of numbers, the binary number 111010 is equal to +58 in sign-magnitude representation, -5 in 1's complement representation, and -4 in 2`s complement representation.
(5) (True, False) The decimal number 2048 can be represented as an unsigned number in 11 bits.
(6) (True, False) Assuming 5-bit 1`s complement representation of numbers, then \(11011+01001\) is equal to 00101 . (7) (True, False) Assuming 6-bit 2's complement representation, the range of numbers that can be represented is -63 to +63 . (8) (True, False) Assuming 8-bit 2`s complement representation of numbers, then E6+9A produces overflow i.e. it produces incorrect result.
(9) (True, False) The result of the following addition operation $(\mathrm{AA})_{16}+(13)_{16}$ is $(123)_{16}$.
(10) (True, False) The result of the following unsigned multiplication operation $(\mathrm{A} 15)_{16} *(8)_{16}$ is $(50 \mathrm{~A} 8)_{16}$.
(Q2) Prove the identity of each of the following Boolean functions using algebraic manipulation. Start with the left-hand side expression and derive from it the right-hand side expression. Clearly indicate the postulates and theorems used.
(i) $(a+b)(a `+c)(b+c)=a ` b+a c$
(ii) $\left\{\left[b^{`}+(a+c)^{`}+a^{`}\left(c^{`}+d\right)\right]\left[d^{`}+b^{`} c^{`}\right]\right\}=b(a+c)+d(b+c)$
(Q3) Given the function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{A}+\mathrm{B}^{`} \mathrm{C}$
(i) Determine the minterms of the function F and express it as an algebraic sum of minterms.
(ii) Determine the maxterms of the function F and express it as an algebraic product of maxterms.
(Q4) Consider the function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Pi \mathrm{M}(3,5)$.
(i) Simplify the function into a minimal sum-of-products expression.
(ii) Simplify the function into a minimal product-of-sums expression.
(iii) Implement the function using only 2-input NAND gates and Inverters, with minimal number of gates. Draw the circuit diagram for your implementation.
(iv) Implement the function using only 2-input NOR gates and Inverters, with minimal number of gates. Draw the circuit diagram for your implementation.
(Q5) Simplify the following Boolean functions \mathbf{F} together with the don't care conditions \mathbf{d}, into minimal sum-of-products expressions. Identify all the prime implicants and the essential prime implicants.
(i) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,6,7,9,11,13,15), \mathrm{d}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(2,5,8$, 10)

${ }^{\text {CD }}$	00	01	11	10
00	1	0	0	X
01	0	X	1	1
11	0	1	1	0
10	X	1	1	X

(ii) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\Sigma \mathrm{m}(0,1,2,3,4,6,10,11,14,17,18,21,22,25$, $26,27,29,30)$

$\mathrm{A}=0$				
$\mathrm{DE}^{\text {a }}$	00	01	11	10
00	1	1	1	1
01	1	0	0	1
11	0	0	0	1
10	0	0	1	1

$\mathrm{A}=1$				
${ }^{\text {DE }}$	00	01	11	10
00	0	1	0	1
01	0	1	0	1
11	0	1	0	1
10	0	1	1	1

