KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS COMPUTER ENGINEERING DEPARTMENT

COE 202 Digital Logic Design

Term 141 Lecture Breakdown

Lec \#	Date	Topics	Ref.
1	U 31/8	Syllabus \& Course Introduction. Information Processing and representation. Digital vs. Analog quantities. Digitization of Analog signals. Minimizing Quantization Error.	
2	T 2/9	Minimizing Quantization Error, Digital representation of information. Effect of noise on the reliability and choice of digital system, Maximizing Noise Margin. Numbering Systems, Weighted Number Systems.	Chapter 1
3	TH 4/9	Weighted Number Systems, the Radix, Radix Point. Binary, Octal and Hexadecimal systems. Important Properties. Number Base Conversion.	Chapter 1
4	U 7/9	Converting Whole (Integer) Numbers, Converting from Decimal to Other Bases, Various Methods of Conversion from Decimal to Binary. Converting Fractions.	Chapter 1
5	T 9/9	Binary and Hexadecimal Addition, Subtraction, Binary and Hexadecimal Multiplication. Binary Codes for Decimal Digits.	Chapter 1
6	TH 11/9	Binary Codes for Decimal Digits, Character Storage, ASCII Code. Error Detection, Parity Bit. Elements of Boolean Algebra (Binary Logic), Logic Gates \& Logic Operations.	Chapter 1 \& 2.2
7	U 14/9	Boolean Algebra, Basic Identities of Boolean Algebra, Duality Principle, Operator Precedence. Properties of Boolean Algebra. Algebraic Manipulation.	$2.2-2.4$ \& 2.7
8	T 16/9	Algebraic Manipulation. (Quiz\#1)	2.2-2.4 \& 2.7
9	TH 18/9	Minterms, Expressing Functions as a Sum of Minterms, Maxterms, Expressing Functions as a Product of Maxterms.	2.5
10	U 21/9	Canonical Forms. Standard Forms, Two-Level Implementations of Standard Forms. Allowed Voltage Levels, Input \& Output Voltage Ranges, Noise Margin. Propagation Delay.	2.5

	T 23/9	National Day - Holiday	
11	TH 25/9	Timing Diagrams. Fanin Limitations, Fanout Limitations. Use of High-Drive Buffers, Use of Multiple Drivers. Gates with Tri-State Outputs.	
	$\begin{aligned} & \hline 26 / 9- \\ & 11 / 10 \end{aligned}$	Id al-Adha Vacation	
12	U 12/10	Gates with Tri-State Outputs. Map method of simplification: Two-, and Three-variable KMap.	3.1
13	T 14/10	Map method of simplification: Three-variable K-Map, Four-variable K-Map. Implicants, Prime Implicants. Essential Prime Implicants. Simplification procedure.	3.1-3.4
14	TH 16/10	(Quiz\#2)	
	S 18/10	Major Exam I	
15	U 19/10	Simplification procedure. POS simplification.	3.3-3.5
16	T 21/10	Don't Care Conditions, Simplification procedure using Don't Cares.	3.3-3.5
17	TH 23/10	Five-variable K-map simplification. Sixvariable K-map simplification.	3.3-3.5
	TH 23/10	Last Day for Dropping with W	
18	U 26/10	Types of gates: primitive vs. complex gates. Buffer \& Tri-state buffer, Nand gate, Nor gate, XOR, XNOR gates.	2.6, 2.8
19	T 28/10	NAND as a universal gates Two-Level Implementation using Nand gates. (Quiz\#3)	2.6, 2.8
20	TH 30/10	NOR as a universal gates Two-Level Implementation using NOR gates. Implementing circuits using Nand/Nor gates, Complex Gates, Exclusive OR (XOR) Gate, Exclusive NOR (XNOR) Gate	2.6, 2.8
21	U 2/11	Complex Gates, Exclusive OR (XOR) Gate, Exclusive NOR (XNOR) Gate, XOR Implementations, Properties of XOR/XNOR Operations. XOR/XNOR for >2 Variables. The Odd \& Even Functions.	2.6, 2.8
22	T 4/11	Parity Generation and Checking. Combinational Logic Circuits, Combinational Circuits Design Procedure. BCD to Excess-3 code conversion. Tutorial on using LogicWorks for simulating circuits.	2.1 \& 5.1
23	TH 6/11	BCD to 7-Segment Decoder for LED. Hierarchical Design, Iterative Arithmetic Combinational Circuits. Adder Design. Half Adder, Full Adder, 4-bit Ripple Carry Adder. Iterative Magnitude Comparator.	5.1

24	U 9/11	Design Examples: Subtractor, Y=3*X. 4-bit RCA: Carry Propagation \& Delay	5.1
25	T 11/11	4-bit RCA: Carry Propagation \& Delay, Carry Look-ahead Adder, Delay for the 4-bit CLA Adder. (Building a device symbol in LogicWorks)	5.1
26	TH 13/11	Representation of signed numbers: signmagnitude, 1`s complement, and 2`s complement.	$\begin{gathered} \hline 1.2 .3-1.2 .4 \& 5.1 .2- \\ 5.1 .3 \end{gathered}$
27	U 16/11	overflow detection, Adder/Subtractor for Signed 2's Complement.. BCD Adder. Binary Multiplier.	$\begin{gathered} \hline 1.2 .3-1.24 \& 5.1 .2- \\ 5.1 .3 \& 5.8 \end{gathered}$
28	T 18/11	Enabling Function, Decoders. Implementing Functions using Decoders. Hierarchical design of decoders. Encoders: Priority Encoders.	5.2-5.4
29	TH 20/11	Encoders: Priority Encoders. Multiplexers: $2 \times 1,4 \times 1$. Constructing large MUXs from smaller ones. Function implementation using multiplexers. (Quiz\#4)	5.2-5.4
	TH 20/11	Last Day for Dropping all Courses with W	
30	U 23/11	Demultiplexer, Design Examples using MSI Functional Blocks. Arithmetic unit design, Absolute Value of a number, Multiplication and division by a constant.	5.4 \& 5.8
31	T 25/11	Design Examples using MSI Functional Blocks: Adding Three 4-bit numbers, Adding two 16 -bit numbers using 4 -bit adders, Building 4-to-16 Decoders using 2-to-4 Decoders with Enable, Selecting the larger of two 4-bit numbers (unsigned \& signed).	5.4 \& 5.8
32	TH 27/11	$\begin{aligned} & \text { BCD-toExcess3 code conversion using } \\ & \text { decoder-encoder. (Quiz\#5) }\end{aligned}$	5.4 \& 5.8
	S 29/11	Major Exam II	
33	U 30/11	Introduction to Sequential Circuits. Synchronous vs asynchronous sequential circuits, Mealy vs Moore model, NOR Set-	6.1-6.3
34	T 2/12	NOR Set-Reset (SR) Latch. NAND Set-Reset (SR) Latch, Clocked (or controlled) D Latch. Timing Problem of the transparent Latch.	6.1-6.3
35	TH 4/12	Flip flops, Edge-Triggered D-type Flip-Flop. Flip-Flop Timing Parameters: Setup and hold times, flip-flop propagation delay.	6.1-6.3
36	U 7/12	Flip-Flop Timing Parameters: Setup and hold times, flip-flop propagation delay. Speed of sequential circuit. Synchronous and asynchronous reset.	6.1-6.3

37	T 9/12	Sequential Circuit Analysis: One-Dimensional State Table. Two-Dimensional State Table, Sate Diagram. Moore and Mealy Models. Analysis of sequential circuit (Moore model).	6.4
38	TH 11/12	Analysis of sequential circuit examples. Sequential Circuit Design Procedure, sequence detector (overlapping vs non-overlapping, Mealy vs Moore).	6.4 \& 7.4
39	U 14/12	Sequential Circuit Implementation examples: Sequence detector, serial adder, 2's complement	7.4
40	T 16/12	Sequential Circuit Design Examples: Sequential Comparator, $\mathrm{Y}=3 * \mathrm{X}+1, \mathrm{Y}=3 * \mathrm{X}-1$, BCD-to-excess-3 code conversion.	7.4
41	TH 18/12	Registers, 4-bit Register, with Clear \& Selective Parallel Load by clock gating, Avoiding clock gating. Shift Registers. Shift Register Applications. Linear Feedback Shift Register (LFSR).	8.1
	TH 18/12	Dropping all Courses with WP/WF	
42	U 21/12	Designing Synchronous Counters using FSMs, Up-Down Synchronous Counter with Enable \& Parallel Load. Synchronous Counters. Building Large counters from Small counters. Modulo counters. Counters as Frequency Dividers.	8.2
43	T 23/12	Ripple Counter (Asynchronus). Programmable Implementation Technologies: Overview, Why Programmable Logic? Programmable Logic Configurations: ROM, PAL and PLA Configurations, Read Only Memory (ROM).	8.2 \& 5.6
44	TH 25/12	Sequential Circuit implementation using ROMs. Programmable Array Logic (PAL), Programmable Logic Array (PLA). (Quiz\#6)	5.6
45	U 28/12	Final Exam Review.	

