KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT

COE 202 Digital Logic Design

Term 122 Lecture Breakdown

Lec #	Date	Topics	Ref.
1	S 26/1	Syllabus & Course Introduction. Information Processing and representation. Digital vs. Analog quantities. Digitization of Analog signals.	
2	M 28/1	Digital representation of information, Effect of noise on the reliability and choice of digital system. Numbering Systems, Weighted Number Systems, the Radix, Radix Point.	Chapter 1
3	W 30/1	Binary, Octal and Hexadecimal systems, Conversion between binary, Octal and Hexadecimal, Important Properties.	Chapter 1
4	S 2/2	Important Properties. Number Base Conversion, Converting Whole (Integer) Numbers, Converting from Decimal to Other Bases, Various Methods of Conversion from Decimal to Binary. Converting Fractions.	Chapter 1
5	M 4/2	Converting Fractions, Binary Addition, Subtraction, Multiplication, Hexadecimal Addition and Subtraction, Binary Codes for Decimal Digits.	Chapter 1
6	W 6/2	Binary Codes for Decimal Digits, Character Storage, ASCII Code. Error Detection, Parity Bit. Elements of Boolean Algebra (Binary Logic), Logic Gates & Logic Operations.	Chapter 1 & 2.2
7	S 9/2	Boolean Algebra, Basic Identities of Boolean Algebra, Duality Principle, Operator Precedence. Properties of Boolean Algebra, Algebraic Manipulation.	2.2-2.4 & 2.7
8	M 11/2	Algebraic Manipulation (Quiz#1)	2.7
9	W 13/2	Algebraic Manipulation, MinTerms, Expressing Functions as a Sum of Minterms.	2.7 & 2.5
10	S 16/2	MaxTerms, Expressing Functions as a Product of Maxterms. Operations on functions performed as operations on Minterms. Canonical Forms, Standard Forms.	2.5
11	M 18/2	Two-Level Implementations of Standard Forms. Allowed Voltage Levels, Input &	2.5

		Output Voltage Ranges, Noise Margin. Propagation Delay, Timing Diagrams.	
12	W 20/2	Fanin Limitations, Fanout Limitations, Use of High- Drive Buffers, Use of Multiple Drivers, Gates with Tri-State Outputs.	
13	S 23/2	Map method of simplification: Two-, and Three-variable K-Map. (Quiz#2)	3.1
14	M 25/2	Map method of simplification: Three-variable & Four-variable K-Map. Implicants, Prime Implicants, Essential Prime Implicants. Simplification procedure	3.1-3.2
15	W 27/2	Simplification procedure, POS simplification	3.4
	Th. 28/2	Major Exam I	
16	S 2/3	SOP Simplification procedure using Don't Cares, Five-variable K-map simplification.	3.3-3.5
17	M 4/3	Six-variable K-map simplification, types of gates: primitive vs. complex gates. Buffer & Tri-state buffer, Nand gate, Nor gate, universal gates, Two-Level Implementation using Nand/Nor gates.	3.5, 2.6
18	W 6/3	Solution of Major Exam I	
	W 6/3	Last Day for Dropping with W	
19	S 9/3	General circuit implementations using NAND/Nor gates, Complex Gates, Exclusive OR (XOR) Gate, Exclusive NOR (XNOR) Gate, XOR Implementations, Properties of XOR/XNOR Operations. Properties of XOR/XNOR Operations, XOR/XNOR for >2 Variables. The Odd & Even Functions, Parity Generation and Checking.	2.6, 2.8
20	M 11/3	(Quiz#3)	
21	W 13/3	Combinational Logic Circuits, Combinational Circuits Design Procedure. BCD to Excess 3 Code Converter. BCD to 7-Segment Decoder for LED. (Introduction to LogicWorks)	2.1
22	S 16/3	Hierarchical Design, Iterative Arithmetic Combinational Circuits, Iterative equal and magnitude comparator design, Adder Design. Half Adder, Full Adder, 4-bit Ripple Carry Adder.	5.1
23	M 18/3	4-bit RCA: Carry Propagation & Delay. Building a device Symbol in Logic Works.	5.1
	M 18/3 (Makeup)	4-bit RCA: Carry Propagation & Delay, Carry Lookahead Adder, Delay for the 4-bit CLA Adder.	5.1
24	W 20/3	No Class	
	23-27/3	Midterm Vacation	

	Т		
25	S 30/3	Representation of signed numbers: sign-	1.2.3-1.24 & 5.1.2-
		magnitude, 1's complement, and 2's	5.1.3
		complement. Adder/Subtractor for Signed 2's	
		Complement.	
26	M 1/4	Signed Number Representation. Overflow	1.2.3-1.24 & 5.1.2-
	1,1 1,	Detection.	5.1.3
27	W 3/4	BCD Adder, Binary Multiplier. Enabling	5.8 & 5.2
21	W 3/4	Function, Decoders.	
28	S 6/4	Decoders, Hierarchical design of decoders,	5.2
20	3 0/4	Implementing Functions using Decoders.	0.2
		(Building a device Symbol in Logic Works).	
20	N/ 0//	T T T T T T T T T T T T T T T T T T T	
29	M 8/4	(Quiz#4)	5054
30	W 10/4	Hierarchical design of decoders, Encoders :	5.2-5.4
		Priority Encoders. Multiplexers: 2x1, 4x1.	
		Constructing large MUXs from smaller ones.	
	W 10/4	Last Day for Dropping all Courses with W	
31	S 13/4	Constructing large MUXs from smaller ones.	5.4
	2 20, 1	Function implementation using multiplexers.	
		Demultiplexer.	
32	M 15/4	Design Examples using MSI Functional	5.8
32	141 13/4	Blocks: Adding Three 4-bit numbers, Adding	
		two 16-bit numbers using 4-bit adders,	
		Building 4-to-16 Decoders using 2-to-4	
		Decoders with Enable, Selecting the larger of	
		two 4-bit numbers, Absolute Value of a	
		number. BCD to Excess-3 Code Converter	
		using a decoder and straight binary encoder,	
		Shifter Design, multiplication and division by	
		a constant.	
			6.1-6.3
33	W 17/4	Introduction to Sequential Circuits, Types of	0.1-0.3
		sequential circuits: Synchronous vs.	
		Asynchronous, NOR Set–Reset (SR) Latch.	
		NAND Set-Reset (SR) Latch, Clocked (or	
		controlled) SR NAND Latch, D Latch. Timing	
		Problem of the transparent Latch.	
	Th. 18/4	Major Exam II	
34	S 20/4	Timing Problem of the transparent Latch, Flip	6.1-6.3
		flops, Edge-Triggered D-type Flip-Flop. Other	
		types of FFs: SR, JK and T flip-flops.	
35	M 22/4	Other types of FFs: JK and T flip-flops.	6.1-6.3
		Characteristic table, Characteristic equation,	
		Excitation table, Designing flip-flops using	
		other flip-flops.	
36	W 24/4	Sequential Circuit Analysis: One-Dimensional	6.4
	,, <u>,,</u> ,,,	State Table. Sequential Circuit Analysis: One-	
		Dimensional State Table, Two-Dimensional	
		State Table, Sate Diagram, Moore and Mealy	
		Models. Synchronous & Asynchronous Reset.	
L	l .		

37	S 27/4	Sequential Circuit Analysis, Flip-Flop Timing Parameters: Setup and hold times.	6.4
38	M 29/4	(Quiz#5)	
39	W 1/5	Flip-Flop Timing Parameters: Setup and hold times, flip-flop propagation delay. Speed of sequential circuit. Sequential Circuit Design Procedure, Serial Adder Design.	7.1 & 7.4
40	S 4/5	Sequential circuit design examples: Sequential Comparator, Sequence Detectors (Mealy & Moore).	7.4
41	M 6/5	Registers, 4-bit Register, with Clear & Selective Parallel Load by clock gating, Avoiding clock gating. Shift Registers. Shift Register Applications.	8.1
42	W 8/5	Designing Synchronous Counters using FSMs, Up-Down Ripple Counter with Enable & Parallel Load. Synchronous Counters. Modulo N counters.	8.2
	W 8/5	Dropping all Courses with WP/WF	
43	S 11/5	Modulo N counters, Building Large counters from Small counters, Counters as Frequency Dividers.	8.2
44	M 13/5	Asynchronous (Ripple) Counter, Programmable Implementation Technologies: Overview, Why Programmable Logic? Programmable Logic Configurations: ROM, PAL and PLA Configurations, Read Only Memory (ROM), Types of ROM Devices, Read Only Memory (ROM) Advantages/Limitations. Logic implementation using ROMs.	8.2 & 5.6
45	W 15/5	Logic implementation using ROMs. Programmable Array Logic (PAL), Programmable Logic Array (PLA).	5.6