KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS COMPUTER ENGINEERING DEPARTMENT

COE 202 Digital Logic Design

Term 121 Lecture Breakdown

$\begin{gathered} \text { Lec } \\ \# \end{gathered}$	Date	Topics	Ref.
1	S 1/9	Syllabus \& Course Introduction.	
2	M 3/9	Information Processing and representation. Digital vs. Analog quantities. Digitization of Analog signals.	1.1
3	W 5/9	Digital representation of information, Effect of noise on the reliability and choice of digital system. Numbering Systems, Weighted Number Systems, the Radix, Radix Point.	1.1 \& 1.2
4	S 8/9	Binary, Octal and Hexadecimal systems, Important Properties. Number Base Conversion, Converting Whole (Integer) Numbers, Converting from Decimal to Other Bases, Various Methods of Conversion from Decimal to Binary.	1.2 \& 1.3
5	M 10/9	Conversion between binary, Octal and Hexadecimal. Converting Fractions, Binary Addition, Subtraction.	1.3
6	W 12/9	Binary Multiplication, Hexadecimal Addition and Subtraction, Binary Codes for Decimal Digits, Character Storage, ASCII Code.	1.3-1.6
7	S 15/9	ASCII Code. Error Detection, Parity Bit. Elements of Boolean Algebra (Binary Logic), Logic Gates \& Logic Operations.	2.1, 2.2
8	M 17/9	Boolean Algebra, Basic Identities of Boolean Algebra, Duality Principle, Operator Precedence. Properties of Boolean Algebra, Algebraic Manipulation.	2.1, 2.2
9	W 19/9	Algebraic Manipulation (Quiz\#1)	2.1, 2.2
10	S 22/9	Saudi National Day.	
11	M 24/9	MinTerms, MaxTerms, Expressing Functions as a Sum of Minterms, as a Product of Maxterms. Operations on functions performed as operations on minterms.	2.3
12	W 26/9	Canonical Forms, Standard Forms, Two-Level Implementations of Standard Forms. (Quiz\#2)	2.3
13	S 29/9	Allowed Voltage Levels, Input \& Output Voltage Ranges, Noise Margin. Propagation	2.9, 3.2

		Delay, Timing Diagrams.	
14	M 1/10	Propagation Delay, Timing Diagrams, Fanin Limitations, Fanout Limitations, Use of HighDrive Buffers, Use of Multiple Drivers, Gates with Tri-State Outputs.	2.10, 6.1, 6.2
15	W 3/10	Map method of simplification: Two-, and Three-variable K-Map. Introduction to Logic Works.	2.4
	Th. 4/10	Major Exam I	
16	S 6/10	Map method of simplification: Three-variable \& Four-variable K-Map. Implicants, Prime Implicants, Essential Prime Implicants.	2.4, 2.5
17	M 8/10	Simplification procedure, POS simplification	2.5
18	W 10/10	SOP Simplification procedure using Don't Cares, Five-variable K-map simplification.	2.5
	W 10/10 Makeup	Six-variable K-map simplification, ypes of gates: primitive vs. complex gates. Buffer \& Tri-state buffer, Nand gate, Nor gate, universal gates, Two-Level Implementation using Nand/Nor gates.	2.7 \& 2.8
	W 10/10	Last Day for Dropping with W	
19	S 13/10	Complex Gates, Exclusive OR (XOR) Gate, Exclusive NOR (XNOR) Gate, XOR Implementations, Properties of XOR/XNOR Operations. Properties of XOR/XNOR Operations, XOR/XNOR for >2 Variables. The Odd \& Even Functions, Parity Generation and Checking.	2.8
20	M 15/10	Combinational Logic Circuits, Combinational Circuits Design Procedure. BCD to Excess 3 Code Converter. BCD to 7-Segment Decoder for LED.	3.1-3.3
21	W 17/10		
	$\begin{gathered} 18 / 10- \\ 2 / 11 \\ \hline \end{gathered}$	Eid Al-Adha Vacation	
22	S 3/11	Hierarchical Design, Iterative Arithmetic Combinational Circuits, Iterative equal and magnitude comparator design, Adder Design. Half Adder, Full Adder, 4-bit Ripple Carry Adder.	5.1-5.2
23	M 5/11	4-bit RCA: Carry Propagation \& Delay, Carry Lookahead Adder, Delay for the 4-bit CLA Adder.	5.1-5.2
24	W 7/11	Representation of signed numbers: signmagnitude, 1`s complement, and 2`s complement. Overflow detection.	5.3
25	S 10/11	Building a device Symbol in Logic Works. (Quiz\#3)	

26	M 12/11	overflow detection, sign extension, Adder/Subtractor for Signed 2's Complement. BCD Adder, Binary Multiplier.	5.3-5.5
27	W 14/11	Enabling Function, Decoders, Hierarchical design of decoders, Implementing Functions using Decoders. Introduction to encoders.	4.2, 4.3, 4.6
28	S 17/11	Encoders: Priority Encoders. Multiplexers: 2×1, 4×1. Constructing large MUXs from smaller ones. Function implementation using multiplexers.	3.8, 3.9
29	M 19/11	Demultiplexer. Design Examples using MSI Functional Blocks: Adding Three 4-bit numbers, Adding two 16 -bit numbers using 4 bit adders, Building 4 -to- 16 Decoders using 2-to-4 Decoders with Enable, Selecting the larger of two 4-bit numbers, Absolute Value of a number. BCD to Excess-3 Code Converter using a decoder and straight binary encoder, Shifter Design, multiplication and division by a constant.	4.6, 5.6
30	W 21/11	Review for Major Exam II.	
	W 21/11	Last Day for Dropping all Courses with W	
	Th. 22/11	Major Exam II	
31	S 24/11	Introduction to Sequential Circuits, Types of sequential circuits: Synchronous vs. Asynchronous, NOR Set-Reset (SR) Latch.	6.1-6.2
32	M 26/11	NAND Set-Reset (SR) Latch, Clocked (or controlled) SR NAND Latch, D Latch. Timing Problem of the transparent Latch.	6.1-6.2
33	W 28/11	Timing Problem of the transparent Latch, Flip flops, S-R Master-Slave (Pulse-Triggered) Flip-Flop, Problems with the S-R MasterSlave Flip-Flop, Edge-Triggered D-type FlipFlop. Other types of FFs: JK and T flip-flops.	6.3
34	S 1/12	Other types of FFs: JK and T flip-flops. Characteristic table, Characteristic equation, Excitation table, Designing flip-flops using other flip-flops. Flip-Flop Timing Parameters: Setup and hold times.	6.4
35	M 3/12	lip-Flop Timing Parameters: Setup and hold times, flip-flop propagation delay. Speed of sequential circuit. Sequential Circuit Analysis: One-Dimensional State Table.	6.4
36	W 5/12	Sequential Circuit Analysis: One-Dimensional State Table, Two-Dimensional State Table, Sate Diagram, Moore and Mealy Models. Synchronizing sequence. Synchronous \& Asynchronous Reset.	6.4

37	S 8/12	Sequential Circuit Design Procedure, Serial Adder Design. Sequence Detector.	6.5
38	M 10/12	Sequential circuit design examples: Sequential Comparator. (Quiz\#4)	6.5
39	W 12/12	Sequential circuit design examples: Two's complement computation (Mealy \& Moore), Serial multiplier by a constant (3x), two sequences detector.	6.5
40	S 15/12	State Minimization. Registers, 4-bit Register, with Clear \& Selective Parallel Load by clock gating, Avoiding clock gating. Shift Registers,	7.1-7.3, 7.6
41	M 17/12	Shift Register Applications. Counters, Ripple Counter. Up-Down Ripple Counter with Enable \& Parallel Load. Synchronous Counters: Serial and Parallel Implementations, Up/Down Synchronous Binary Counting with Enable and Parallel Load.	7.6-7.7
42	W 19/12	Up/Down Synchronous Binary Counting with Enable and Parallel Load. Modulo N counters.	7.6-7.7
	W 19/12	Dropping all Courses with WP/WF	
43	S 22/12	Counters as Frequency Dividers, Designing Synchronous Counters using FSMs, Handling Unused States, Counter with Arbitrary Count Sequence. Programmable Implementation Technologies: Overview, Why Programmable Logic?	7.6-7.7 \& 3.6
44	M 24/12	Programmable Logic Configurations: ROM, PAL and PLA Configurations, Read Only Memory (ROM), Types of ROM Devices, Read Only Memory (ROM) Advantages/Limitations. Logic implementation using ROMs.	3.6
45	W 26/12	$\begin{array}{lrcc}\text { Logic implementation } & \text { using } & \text { ROMs. } \\ \text { Programmable Array } & \text { Logic } & \text { (PAL), }\end{array}$ Programmable Logic Array (PLA), Memory Devices: Introduction. Capacity of a Memory Device, Basic Types of Memory Devices, RAM Memory.	3.6 \& 9.1-9.2
	S 29/12 (Makeup)	Types of RAM Memory. Review for Final Exam.	9.1-9.2

