KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS COMPUTER ENGINEERING DEPARTMENT

COE 202 Digital Logic Design
Term 102 Lecture Breakdown

$\begin{gathered} \text { Lec } \\ \# \end{gathered}$	Date	Topics	Ref.
1	S 12/2	Syllabus \& Course Introduction.	
2	M 14/2	Information Processing and representation. Digital vs Analog quantities, Digitization of Analog signals, Digital representation of information, Effect of noise on the reliability and choice of digital system.	1.1
3	W 16/2	Numbering Systems, Weighted Number Systems, the Radix, the Radix Point, Binary, Octal and Hexadecimal systems, Important Properties.	1.2
4	S 19/2	Number Base Conversion, Converting Whole (Integer) Numbers, Converting from Decimal to Other Bases, Various Methods of Conversion from Decimal to Binary. Conversion between binary, Octal and Hexadecimal.	1.3
5	M 21/2	Converting Fractions, Binary Addition, Subtraction and Multiplication, Hexadecimal Addition and Subtraction, Character Storage, ASCII Code, Error Detection, Parity Bit.	1.3-1.6
6	W 23/2	Elements of Boolean Algebra (Binary Logic), Logic Gates \& Logic Operations, Boolean Algebra, Basic Identities of Boolean Algebra, Duality Principle, Operator Precedence. Properties of Boolean Algebra, Algebraic Manipulation.	2.1, 2.2
7	S 26/2	No Class.	
8	M 28/2	Algebraic Manipulation. (Quiz\#1)	2.2
9	W 2/3	MinTerms, MaxTerms, Expressing Functions as a Sum of Minterms.	2.3
10	S 5/3	Functions as a Product of Maxterms, Canonical Forms, Standard Forms, Two-Level Implementations of Standard Forms. Allowed Voltage Levels, Input \& Output Voltage Ranges, Noise Margin.	2.3 \& 2.9
11	M 7/3	Propagation Delay, Timing Diagrams, Fanin Limitations, Fanout Limitations, Use of High-	2.10, 6.1, 6.2

		Drive Buffers, Use of Multiple Drivers, Gates with Tri-State Outputs.	
12	W 9/3	Map method of simplification: Two-, and Three-variable K-Map. Implicants, Prime Implicants, Essential Prime Implicants. Simplification procedure.	2.4, 2.5
13	S 12/3	No Class.	
14	M 14/3	Map manipulation: BCD code, Four-variable k-map. (Quiz\#2)	2.4, 2.5
15	W 16/3	Don't Care Conditions, SOP Simplification procedure using Don't Cares.	2.5
	W 16/3 (Makeup)	Review for Major Exam 1.	
	Th. 17/3	Major Exam I	
16	S 19/3	Holiday.	
17	M 21/3	POS simplification, Five-variable \& sixvariable K-map simplification. Types of gates: primitive vs. complex gates.	2.5 \& 2.7
18	W 23/3	Buffer \& Tri-state buffer, Nand gate, Nor gate, universal gates, Two-Level Implementation using Nand/Nor gates.	2.7
	W 23/3	Last Day for Dropping with W	
19	S 26/3	No Class.	
20	M 28/3	Complex Gates, Exclusive OR (XOR) Gate, Exclusive NOR (XNOR) Gate, XOR Implementations, Properties of XOR/XNOR Operations, XOR/XNOR for >2 Variables: The Odd \& Even Functions, Parity Generation and Checking. Combinational Logic Circuits, Combinational Circuits Design Procedure.	2.8 \& 3.1
21	W 30/3	BCD to Excess 3 Code Converter, BCD to 7Segment Decoder for LED, Hierarchical Design, Iterative Arithmetic Combinational Circuits, Adder Design.	3.1-3.2
22	S 2/4	Half Adder, Full Adder, 4-bit Ripple Carry Adder, 4-bit RCA: Carry Propagation \& Delay, Carry Lookahead Adder, Delay for the 4-bit CLA Adder, Signed Number Representation.	4.1-4.4
	S 2/4 (Makeup)	Introduction to Logic Works \& WinLogiLab	
23	M 4/4	Representation of signed numbers: signmagnitude, 1`s complement, and 2`s complement.	4.3-4.4
24	W 6/4	Adder/Subtractor for Signed 2's Complement, BCD Adder, Binary Multiplier, Enabling	3.7, 4.3, 4.4

		Function, Decoders, Implementing Functions using Decoders.	
	9-13/4	Midterm Vacation	
25	S 16/4	Encoders: Priority Encoders. (Quiz\#3)	3.8
26	M 18/4	Multiplexers: $2 \times 1,4 \times 1$. Constructing large MUXs from smaller ones. Function implementation using multiplexers.	3.9
27	W 20/4	No Class.	
28	S 23/4	Demultiplexer, Design Examples using MSI Functional Blocks: Adding Three 4-bit numbers, Adding two 16 -bit numbers using 4 bit adders, Building 4-to-16 Decoders using 2-to-4 Decoders with Enable, Modular Magnitude Comparator, Selecting the larger of two 4-bit numbers, Absolute Value of a number.	3.7-3.9
	S 23/4 (Makeup)	BCD to Excess-3 Code Converter using a decoder and straight binary encoder, ALU design, Multiplication and division by constants, Shifter Design, Sequential Circuits, Concept of memory elements, Nor-Nor SRLatch.	5.1 \& 5.2
29	M 25/4	Introduction to Sequential Circuits, Types of sequential circuits: Synchronous vs. Asynchronous, NOR Set-Reset (SR) Latch, NAND Set-Reset (SR) Latch, Clocked (or controlled) SR NAND Latch, D Latch.	5.1 \& 5.2
30	W 27/4	Review for Major Exam II	
	W 27/4	Last Day for Dropping all Courses with W	
	Th. 28/4	Major Exam II	
31	S 30/4	Timing Problem of the transparent Latch, Flip flops, S-R Master-Slave (Pulse-Triggered) Flip-Flop, Problems with the S-R MasterSlave Flip-Flop, Edge-Triggered D-type FlipFlop.	5.3
32	M 2/5	Solution of Major Exam II.	
33	W 4/5	Flip-Flop Timing Parameters: Setup and hold times, flip-flop propagation delay. Standard Symbols for Storage Elements, Asynchronous vs. Synchronous reset, Other types of FFs: JK and T flip-flops.	6.3 \& 5.6
34	S 7/5	Characteristic table, Characteristic equation, Excitation table, Designing flip-flops using other flip-flops, Sequential Circuit Analysis.	5.4 \& 5.6
35	M 9/5	Sequential Circuit Analysis: One-Dimensional State Table, Two-Dimensional State Table, Sate Diagram, Moore and Mealy Models.	5.4

		Synchronizing sequence.	
36	W 11/5	Sequential Circuit Design Procedure, Bit Sequence Recognizer, Mealy vs. Moore Design. Serial Adder Design.	5.5
37	S 14/5	(Quiz\#6) Two sequence detections design example.	5.5
38	M 16/5	Sequential Circuit Design of 3*X Circuit. Registers, 4-bit Register, with Clear \& Selective Parallel Load by clock gating, Avoiding clock gating.	7.1
39	W 18/5	Shift Registers, Shift Register Applications, Bi-directional Shift Register with Parallel Load, Counters, Ripple Counter.	7.6
40	S 21/5	Up-Down Ripple Counter with Enable \& Parallel Load. (Quiz\#8)	7.6
41	M 23/5	Synchronous Counters with incrementer: Serial and Parallel Implementations, Up/Down Synchronous Binary Counting with Enable and Parallel Load. Using Counters as Frequency Dividers.	7.6
42	W 25/5	Modulo N counters, Designing Synchronous Counters using FSMs, Handling Unused States, Counter with Arbitrary Count Sequence.	7.6
	W 25/5	Dropping all Courses with WP/WF	
43	S 28/5	Programmable Implementation Technologies: Overview, Why Programmable Logic? Hardware Programming Technologies, Programmable Logic Configurations: ROM, PAL and PLA Configurations, Read Only Memory (ROM).	6.8
44	M 30/5	$\begin{array}{lccr}\text { Read } & \text { Only } & \text { Memory } & \text { (ROM) } \\ \text { Advantages/Limitations, } & \text { Programmable Array } \\ \text { Logic } & \text { (PAL), } & \text { Programmable } & \text { Logic }\end{array}$ Array $)$	6.8
45	W 1/6	Capacity of a Memory Device, Basic Types of Memory Devices, RAM Memory, Types of RAM Memory, Read Only Memory (ROM), Types of ROM Devices, ROM-based Designs.	6.8
	$\begin{gathered} \text { S 4/6 } \\ \text { (Makeup) } \end{gathered}$	(Quiz\#10)	
	U 5/6 (Makeup)	Final Exam Review.	

