COMPUTER ENGINEERING DEPARTMENT

COE 202

FUNDAMENTALS OF COMPUTER ENGINEERING

Final Exam

Second Semester (052)
Time: 7:30-10:30 AM

Student Name : \qquad
Student ID. : \qquad

Question	Max Points	Score
Q1	$\mathbf{2 0}$	
Q2	$\mathbf{2 0}$	
Q3	$\mathbf{1 5}$	
Q4	$\mathbf{1 0}$	
Q5	$\mathbf{1 0}$	
Q6	$\mathbf{1 0}$	
Q7	$\mathbf{1 5}$	
Total	$\mathbf{1 0 0}$	

(Q1) Consider the circuit shown below that has two inputs A, B, and two outputs X, Y :

(i) Draw the timing diagram for the outputs X and Y given the waveforms for the inputs A and B shown below. Assume that Y is initially having the value 0 .

(ii) Does this circuit implement a latch or a flip-flop, and what type? Justify your answer. Indicate what A, B, X, and Y represent.
(iii) Show the design of a positive-edge-triggered T flip-flop using SR latches.
(iv) Show the design of a positive-edge-triggered JK flip-flop using a positive-edge-triggered T flip-flop.
(Q2) It is required to design a sequential circuit that receives a serial input X , and produces a serial output Z , equivalent to $3 * \mathrm{X}$, i.e., $\mathrm{Z}=3^{*} \mathrm{X}$. The state diagram for this circuit is shown below:

Implement the sequential circuit using JK-FFs and the smallest number of gates possible assuming the state assignment: $\mathrm{S} 0=00, \mathrm{~S} 1=01$, and $\mathrm{S} 2=10$. Show the state table and minimize your equations using K-map method.
(Q3) A sequential circuit has two D flip-flops A and B, two inputs X and Y, and one output Z. The flip-flop input equations and output function are as follows:

$$
\begin{aligned}
& D_{A}=B X+A Y^{\prime} \\
& D_{B}=A^{\prime} X+B^{\prime} Y \\
& Z=X A B
\end{aligned}
$$

(i) Show the implementation of this circuit using a ROM and D-FFs. Determine the size of the ROM that will be used and show the ROM table.
(ii) Obtain the state diagram for this circuit.
(Q4) Implement the following two functions with a PLA:
$\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(1,2,3,5,6,7,10,11,14,15)$
$\mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,1,4,5,9,10,13,14)$

Minimize the number of product terms used in the PLA. Show the internal logic of the PLA that will be used to implement these two functions.
(Q5) A single-input, single-output sequential circuit is to be designed that recognizes the input sequence 01101 applied to its input any time it occurs in the input stream starting from a reset state. If the sequence is detected the output will be 1 , otherwise it will be 0 . Show the state diagram for this circuit assuming detection of overlapping sequences assuming a Mealy model. As an example, the input stream 01101101101 will produce the output stream 00001001001.
(Q6) It is required to design a sequential circuit that has one serial input stream X and produces a serial output stream computing the 2's complement of X. Obtain the state diagram for this circuit assuming a Moore model.
(Q7) It is required to design a synchronous 3-bit up-down counter using positive-edge-triggered D-FFs. The counter has two inputs E and M . If $\mathrm{E}=0$, the counter remains in the same state, regardless of the value of M . When $\mathrm{E}=1$ and $\mathrm{M}=1$, the counter counts up, and when $\mathrm{E}=1$ and $\mathrm{M}=0$, the counter counts down. Show the logic required to make the counter have Synchronous Reset, RESET. When RESET=1, the counter is reset to 0 .

