King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3) Term 131 (Fall 2013)

Final Exam

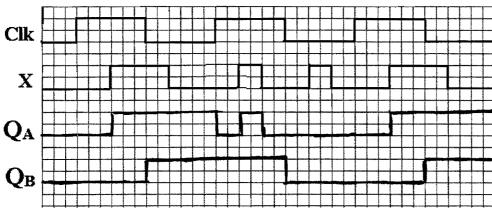
Monday December 30, 2013

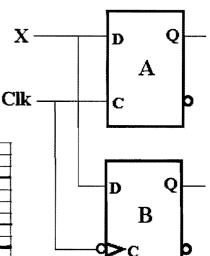
7:00 p.m. – 9:30 p.m.

Time: 150 minutes, Total Pages: 12

Name:	ID:	Section:
		_

Notes:

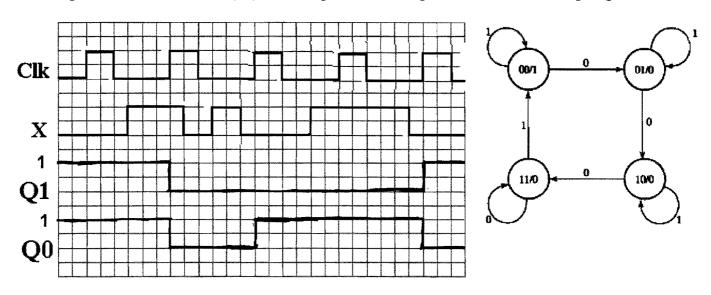

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated


Question	Maximum Points	Your Points
1	13	
2	12	
3	10	
4	10	
5	10	
6	10	
7	15	
Total	80	

a.

In the circuit shown, A is a D-type latch and B is a D-type flip flop. For the input waveforms for the clock signal (Clk) and the input X, accurately draw the resulting waveforms at outputs Q_A and Q_B .

Assume that both QA and QB are initially at 0.



b.

The state diagram shown is for a sequential state that has an input X, and output Y, and state Q1Q0. The circuit uses positive edge triggered D-type flip flops and operates from a 2 kHz clock.

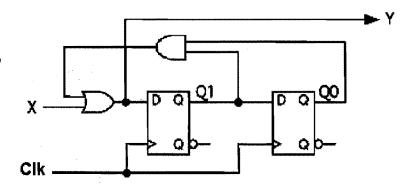
i. Starting with the circuit in state Q1Q0=11, complete the missing waveforms in the timing diagram below.

ii. Let the circuit be in state 00 with input X held permanently at 0. The circuit will end up being stuck at state 11. This state transition requires a minimum time duration of 1.5 ms.

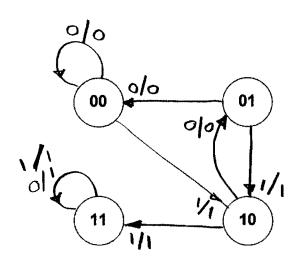
Q2

(12 Points)

Consider the sequential circuit opposite and then answer the following questions:


a. Is the circuit Mealy or Moore?

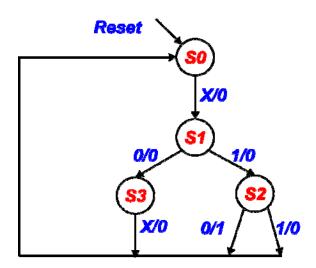
b. Provide logical expressions for the flip flop D inputs and the external output


$$D_{Q_0} = Q_1$$

$$D_{Q_1} = Q_0 Q_1 + X$$

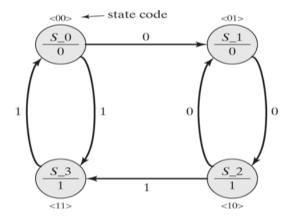
$$Y = Q_0 Q_1 + X$$

c. Give both the state table and the state diagram. Use the layout given below for the state diagram. Note: Q0 represents the LSB of the binary value of the state.


Question 3. (10 Points)

It is required to design a synchronous sequential circuit that receives a serial sequence of **3-bit codes** through input **X** and produces **1** through output **Y** when the received 3-bit code equals either 010 or 110 (i.e., either 0 followed by 1 followed by 0, or 1 followed by 1 followed by 0). Assume the availability of an asynchronous reset input to reset the machine to a reset state. Draw the <u>state diagram</u> of the circuit assuming a <u>Mealy</u> model with <u>minimum</u> number of states. *You are not required to derive the equations and the circuit*. The following is an example of an input and output sequence:

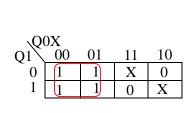
Example:



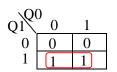
Input	X	010001001101110
Output	Y	001000000000001

Question 4. (10 Points)

The following state diagram represents a synchronous sequential circuit having a single input X and a single output Y. Note that the unspecified (missing) transitions in the state diagram do not occur (i.e. don't care). The states are assigned the following state codes $S_0=00$, $S_1=01$, $S_2=10$ and $S_3=11$. Assume the existence of an **asynchronous reset** input to reset the machine to state S_0 .

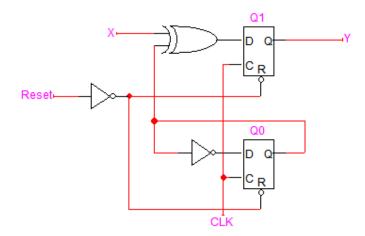

- (i) Draw the state transition table for the sequential circuit.
- (ii) Using D-FFs and <u>minimal</u> combinational logic determine the equations for the D-FFs and output Y for this sequential circuit.
- (iii) Draw the resulting circuit.

(i) State Transition Table:


Curren	nt State	Input	Next State		Output
F1	F0	X	F1+	F0+	Y
0	0	0	0	1	0
0	0	1	1	1	0
0	1	0	1	0	0
0	1	1	X	X	0
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	X	X	1
1	1	1	0	0	1

(ii) FF and Output Equations:

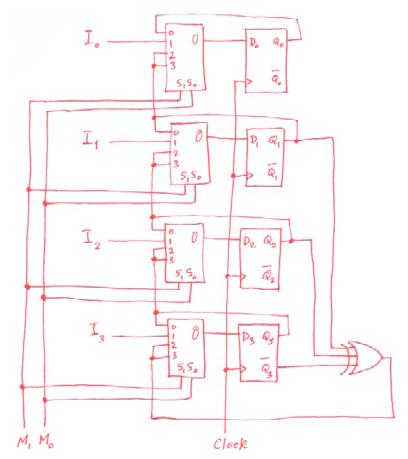
$$Q1+=Q0'X+Q0X'=Q0\oplus X$$



$$Q0+=Q0'$$

$$Y = Q1$$

(iii) <u>Circuit</u>:



Question 5. (10 Points)

Using <u>only</u> D flip-flop(s), MUX(s), and <u>XOR gate(s)</u>, draw the logic diagram for a 4-bit register with 2 mode selection inputs M_1M_0 and 4 load inputs $I_3I_2I_1I_0$. Note that D flip-flop outputs include both the state and its complement (i.e., Q and \bar{Q}) available for use. The register should operate according to the following table:

M_1M_0	Register operation
00	No change.
01	Parallel Load.
1x	Shift <u>right</u> while feeding in an <u>ODD</u> parity bit for the 3 bits that remain in the register <u>after</u> shifting. (<u>Examples</u> : 1. register content <u>before</u> shifting = 0110, register content <u>after</u> shifting = 1011
	2. register content <u>before</u> shifting = 1001, register content <u>after</u> shifting = 0100)

You must clearly label the D flip-flop(s) and MUX(s) inputs and outputs.

Note: It is possible to have any of the following connected to inputs 2 and 3 of the MUX that is connected to D₃:

 $\overline{Q_3} \oplus \overline{Q_2} \oplus \overline{Q_1}$

 $\overline{Q_3} \oplus Q_2 \oplus Q_1$

 $Q_3 \oplus \overline{Q_2} \oplus Q_1$

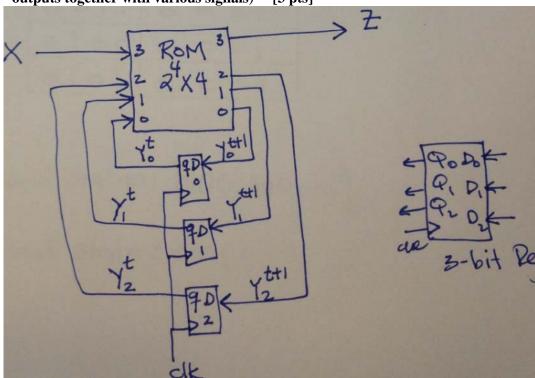
 $Q_3 \oplus Q_2 \oplus \overline{Q_1}$

Question 6. (10 Points)

Consider the following state transition table for a synchronous sequential circuit that detects five consecutive 1's. The circuit has a single input X, a single output Z, and three state variables Y_0 , Y_1 , and Y_2 . The states are encoded using binary codes 001, 010, 011, 100, and 101.

PS	$(Y_2 \ Y1 \ Y_0)^{t+1}$		Z	
$(\mathbf{Y_2} \ \mathbf{Y_1} \ \mathbf{Y_0})^{\mathrm{t}}$	X = 0	X = 1	X = 0	X = 1
0 0 1	0 0 1	0 1 0	0	0
0 1 0	0 0 1	0 1 1	0	0
0 1 1	0 0 1	1 0 0	0	0
1 0 0	0 0 1	1 0 1	0	0
1 0 1	0 0 1	1 0 1	0	1

You are required to implement the above circuit using a **ROM** device and a **register**. The circuit should be designed such that **any unused state should go to the initial state 001**.


a. What is the minimum size of the register (i.e., number of D flip-flops)? [1 pt]

Three state variables \rightarrow 3 FFs

b. What is the minimum size of the ROM (number of memory locations × number of memory bits per location)? [2 pt]

of Locations =
$$2^4$$
 = 16 word
of Bits = 4

c. Draw the block diagram for such an implementation. (Label all components inputs and outputs together with various signals) [3 pts]

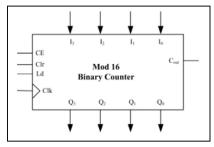
d. Starting in the initial state 001, what is the sequence of ROM locations addresses that will be accessed as a result of applying an input sequence X = 011 where 0 is applied first. [2 pts]

* Order:
$$XY_2Y_1^tY_0^t$$

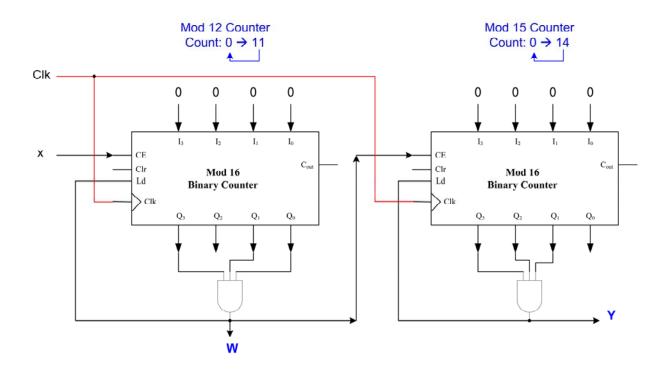
* position: 3210
 $0001 \rightarrow (1)_{10}$
 $10010 \rightarrow (10)_{10}$

e. Starting from address **0**, complete the following table to show the data stored in the first six memory locations in the ROM device [2 pts]

Binary Address			Binary Stored Data				
X	Y_2^t	Y_1^t	Y_0^t	Z	Y_2^{t+1}	Y_1^{t+1}	Y_0^{t+1}
0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	1
0	0	1	0	0	0	0	1
0	0	1	1	0	0	0	1
0	1	0	0	0	0	0	1
0	1	0	1	0	0	0	1


Note: Unused states are states {000, 110, 111}

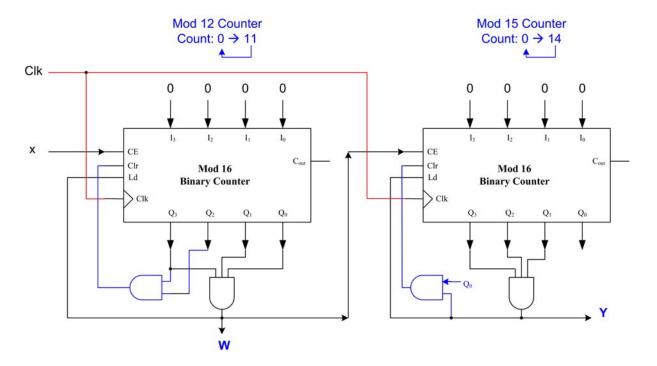
Question 7. (15 Points)


In an assembly line a conveyer belt has a sensor that generates a signal **X** whenever a cartoon box passes down the belt. Each dozen such boxes are placed in a container. The containers are loaded in trucks whose capacity is 15 containers. A signal **Y** is to be generated whenever the truck is full to open an automatic gate letting the truck out. <u>You are to design</u> a counting system that generates signal **Y** and another signal **W** which equals **1** whenever a container is full.

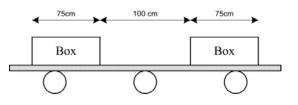
(I) Design this counting system <u>using 2 counters</u>; one to keep track of the number of boxes in a container and another to count the number of containers loaded in a truck. Clearly show how the **W** and **Y** signals are generated.

Design this system using **mod-16** counters with countenable (**CE**) and load (**Ld**) inputs together with the 4 parallel inputs ($\mathbf{I_3} \ \mathbf{I_2} \ \mathbf{I_1} \ \mathbf{I_0}$). In addition, an <u>asynchronous</u> clear (**Clr**) input is also available. The outputs of the counter are the 4 count bits ($\mathbf{Q_3} \ \mathbf{Q_2} \ \mathbf{Q_1} \ \mathbf{Q_0}$) and a carry-out signal $\mathbf{C_{out}}$ which equals 1 when $\mathbf{Q_3} \mathbf{Q_2} \mathbf{Q_1} \mathbf{Q_0} = 1111$.

Draw the complete block diagram of the counting system showing all logic components needed / used by the system (6 Pts)

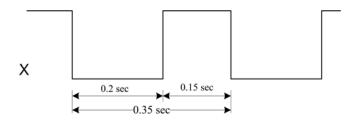

(II) Modify the counting system you designed in part (I) to make it self-resetting, i.e. whenever the system falls in any unused state, the count is automatically reset to zero. (3 Pts)

Unused states for the mod 12 counter correspond to counts: $Q_3Q_2Q_1Q_0 = 1100 \rightarrow 1111$ which correspond to a Boolean expression of unused-1 = Q_3Q_2


Unused states for the mod 15 counter correspond to the single count: $Q_3Q_2Q_1Q_0 = 1111$ which correspond to a Boolean expression of unused-1 = $Q_3Q_2Q_1Q_0$

Once the unused state is detected, the generated signal can be used to asynchronously clear the counter.

The self-resetting logic is shown in blue.


(III) The carton boxes are 75 cm long, and are placed 100 cm apart on the conveyer belt. Signal **X** maintains a value of **1** until the full length of the box passes beyond the sensor. Given that the belt moves at a speed of 5 meters/sec;

a. Plot the *waveform* of signal **X** (value of X versus time).

Signal X = 1 for a period of =
$$\frac{0.75 \text{ meters}}{5 \text{ meters/sec}} = 0.15 \text{ seconds}$$

Signal X = 0 for a period of =
$$\frac{1 \text{ meters}}{5 \text{ meters/sec}}$$
 = 0.2 seconds

b. Neglecting propagation, setup and hold delays, determine the maximum possible clock frequency. What happens if a higher frequency is used? (2 Pts)

No more than one clock pulse may be received during the period when X=1, otherwise one box may count more than once. Thus, the minimum clock period = Period of X=1

$$T_{Clk}(min) = 0.15 \text{ sec } \rightarrow Maximum \text{ frequency } f_{max} = 1/0.15 = 6.66 \text{ Hz}$$

c. Neglecting propagation, setup and hold delays, determine the minimum possible clock frequency. What happens if a lower frequency is used? (2 Pts)

At least one clock pulse should be received for each X pulse, otherwise a box may pass without being counted at all.

$$T_{Clk}(max) = 0.35 \text{ sec } \rightarrow minimum \text{ frequency } f_{min} = 1/0.35 = 2.86 \text{ Hz}$$

Thus the clock frequency f should satisfy: 2.86. Hz < f < 6.66 Hz