King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 131 (Fall 2013)

Final Exam

Monday December 30, 2013
7:00 p.m. - 9:30 p.m.

Time: 150 minutes, Total Pages: 12

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	13	
2	12	
3	10	
4	10	
5	10	
6	10	
7	15	
Total	80	

a.

In the circuit shown, A is a D-type latch and B is a D-type flip flop. For the input waveforms for the clock signal (Clk) and the input X , accurately draw the resulting waveforms at outputs \mathbf{Q}_{A} and \mathbf{Q}_{B}.

Assume that both Q_{A} and Q_{B} are initially at 0 .

Clk

X
Q
Qв
b.

The state diagram shown is for a sequential state that has an input X , and output Y , and state Q 1 Q 0 . The circuit uses positive edge triggered D-type flip flops and operates from a 2 kHz clock.
i. Starting with the circuit in state $\mathrm{Q} 1 \mathrm{Q} 0=11$, complete the missing waveforms in the timing diagram below.

ii. Let the circuit be in state 00 with input X held permanently at 0 . The circuit will end up being stuck at state \qquad 11 . This state transition requires a minimum time duration of \qquad 1.5 ms .

$$
3 \times T=3 \times 0.5 \mathrm{~ms}
$$

Q2

Consider the sequential circuit opposite and then answer the following questions:
a. Is the circuit Mealy or Moore?
Mealy
b. Provide logical expressions for the flip flop D inputs and the external output

$$
\begin{aligned}
& D_{Q_{0}}=Q_{1} \\
& D_{Q_{1}}=Q_{0} Q_{1}+x \\
& Y=Q_{0} Q_{1}+x
\end{aligned}
$$

c. Give both the state table and the state diagram. Use the layout given below for the state diagram. Note: Q0 represents the LSB of the binary value of the state.

It is required to design a synchronous sequential circuit that receives a serial sequence of $\mathbf{3}$-bit codes through input \mathbf{X} and produces $\mathbf{1}$ through output \mathbf{Y} when the received 3bit code equals either 010 or 110 (i.e., either 0 followed by 1 followed by 0 , or 1 followed by 1 followed by 0). Assume the availability of an asynchronous reset input to reset the machine to a reset state. Draw the state diagram of the circuit assuming a Mealy model with minimum number of states. You are not required to derive the equations and the circuit. The following is an example of an input and output sequence:

Example:

Input	\mathbf{X}	010001001101110
Output	\mathbf{Y}	001000000000001

The following state diagram represents a synchronous sequential circuit having a single input \mathbf{X} and a single output Y. Note that the unspecified (missing) transitions in the state diagram do not occur (i.e. don't care). The states are assigned the following state codes $\mathbf{S} _\mathbf{0}=\mathbf{0 0}, \mathbf{S} _\mathbf{1 = 0 1 , ~ S _ 2 = 1 0}$ and $\mathbf{S} _3=11$. Assume the existence of an asynchronous reset input to reset the machine to state S_0.

(i) Draw the state transition table for the sequential circuit.
(ii) Using D-FFs and minimal combinational logic determine the equations for the D-FFs and output Y for this sequential circuit.
(iii) Draw the resulting circuit.
(i) State Transition Table:

Current State		Input	Next State		Output
F1	F0	X	F1+	F0+	Y
0	0	0	0	1	0
0	0	1	1	1	0
0	1	0	1	0	0
0	1	1	X	X	0
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	X	X	1
1	1	1	0	0	1

(ii) FF and Output Equations:

Q0x				
Q1		01	11	10
0	0	1	X	1
1	0	1	0	X

$$
\mathrm{Q} 1+=\mathrm{Q} 0{ }^{\prime} \mathrm{X}+\mathrm{Q} 0 \mathrm{X}^{\prime}=\mathrm{Q} 0 \oplus \mathrm{X}
$$

Q0X				
Q1	00	01	11	10
0	1	1	X	0
1	1	1	0	X

$$
\mathrm{Q} 0+=\mathrm{Q} 0^{\prime}
$$

$\mathrm{Q} 1 \mathrm{Q}^{\mathrm{Q}}$	0	1
0	0	0
1	1	1

$$
\mathrm{Y}=\mathrm{Q} 1
$$

(iii) Circuit:

Question 5.

Using only D flip-flop(s), MUX(s), and XOR gate(s), draw the logic diagram for a 4-bit register with 2 mode selection inputs $M_{1} M_{0}$ and 4 load inputs $I_{3} I_{2} I_{1} I_{0}$. Note that D flip-flop outputs include both the state and its complement (i.e., Q and \bar{Q}) available for use. The register should operate according to the following table:

$\boldsymbol{M}_{\mathbf{1}} \boldsymbol{M}_{\mathbf{0}}$	Register operation
00	No change.
01	Parallel Load.
1 x	Shift $\underline{\text { right }}$ while feeding in anODD parity bit for the 3 bits that remain in the register after shifting. (Examples: 1. register content before shifting = 0110, register content $\underline{\text { after shifting }=1011}$
2. register content before shifting $=1001$, register content $\underline{\text { after shifting }=0100)}$	

You must clearly label the D flip-flop(s) and MUX(s) inputs and outputs.

Note: It is possible to have any of the following connected to inputs 2 and 3 of the MUX that is connected to D_{3} :

$$
\begin{aligned}
& \overline{Q_{3}} \oplus \overline{Q_{2}} \oplus \overline{Q_{1}} \\
& \overline{Q_{3}} \oplus Q_{2} \oplus Q_{1} \\
& Q_{3} \oplus \overline{Q_{2}} \oplus Q_{1} \\
& Q_{3} \oplus Q_{2} \oplus \overline{Q_{1}}
\end{aligned}
$$

Question 6.

(10 Points)
Consider the following state transition table for a synchronous sequential circuit that detects five consecutive 1's. The circuit has a single input \mathbf{X}, a single output \mathbf{Z}, and three state variables $\mathbf{Y}_{\mathbf{0}}, \mathbf{Y}_{\mathbf{1}}$, and \mathbf{Y}_{2}. The states are encoded using binary codes $\mathbf{0 0 1}, \mathbf{0 1 0}, \mathbf{0 1 1}, \mathbf{1 0 0}$, and 101.

PS	$\left(\begin{array}{lll}\mathrm{Y}_{2} & \mathrm{Y} 1 & \mathrm{Y}_{0}\end{array}\right)^{\mathbf{t + 1}}$		Z	
$\left(\begin{array}{llll}\mathbf{Y}_{\mathbf{2}} & \mathbf{Y}_{1} & \mathbf{Y}_{0}\end{array}\right)^{\mathrm{t}}$	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
$0 \quad 01$	$0 \quad 0 \quad 1$	010	0	0
0110	$0 \quad 01$	$0 \quad 11$	0	0
011	$0 \quad 01$	100	0	0
100	001	101	0	0
101	$0 \quad 0 \quad 1$	101	0	1

You are required to implement the above circuit using a ROM device and a register. The circuit should be designed such that any unused state should go to the initial state 001.
a. What is the minimum size of the register (i.e., number of D flip-flops)? [1 pt]

Three state variables $\rightarrow \mathbf{3 F F s}$
b. What is the minimum size of the ROM (number of memory locations \times number of memory bits per location)?
\# of Locations $=2^{4}=16$ word
\# of Bits = 4
c. Draw the block diagram for such an implementation. (Label all components inputs and outputs together with various signals) [3 pts]

d. Starting in the initial state $\mathbf{0 0 1}$, what is the sequence of ROM locations addresses that will be accessed as a result of applying an input sequence $\mathbf{X}=\mathbf{0 1 1}$ where $\mathbf{0}$ is applied first.
[2 pts]

* Order: $X Y_{2}^{t} Y_{1}^{t} Y_{0}^{t}$ * position: $3<10$

e. Starting from address $\mathbf{0}$, complete the following table to show the data stored in the first six memory locations in the ROM device

Binary Address			Binary Stored Data				
\mathbf{X}	$\boldsymbol{Y}_{2}^{\boldsymbol{t}}$	$\boldsymbol{Y}_{1}^{\boldsymbol{t}}$	$\boldsymbol{Y}_{\mathbf{0}}^{\boldsymbol{t}}$	\mathbf{Z}	$\boldsymbol{Y}_{2}^{\boldsymbol{t + 1}}$	$\boldsymbol{Y}_{1}^{\boldsymbol{t + 1}}$	$\boldsymbol{Y}_{0}^{\boldsymbol{t + 1}}$
0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	1
0	0	1	0	0	0	0	1
0	0	1	1	0	0	0	1
0	1	0	0	0	0	0	1
0	1	0	1	0	0	0	1

Note: Unused states are states $\{000,110,111\}$

Question 7.

(15 Points)
In an assembly line a conveyer belt has a sensor that generates a signal \mathbf{X} whenever a cartoon box passes down the belt. Each dozen such boxes are placed in a container. The containers are loaded in trucks whose capacity is 15 containers. A signal \mathbf{Y} is to be generated whenever the truck is full to open an automatic gate letting the truck out. You are to design a counting system that generates signal \mathbf{Y} and another signal \mathbf{W} which equals $\mathbf{1}$ whenever a container is full.
(I) Design this counting system using 2 counters; one to keep track of the number of boxes in a container and another to count the number of containers loaded in a truck. Clearly show how the \mathbf{W} and \mathbf{Y} signals are generated.

Design this system using mod-16 counters with countenable (CE) and load (Ld) inputs together with the 4 parallel inputs ($\mathbf{I}_{3} \mathbf{I}_{\mathbf{2}} \mathbf{I}_{\mathbf{1}} \mathbf{I}_{\mathbf{0}}$). In addition, an asynchronous clear ($\mathbf{C l r}$) input is also available. The outputs of the counter are the 4 count bits ($\mathbf{Q}_{3} \mathbf{Q}_{2} \mathbf{Q}_{\mathbf{1}} \mathbf{Q}_{\mathbf{0}}$) and a carry-out signal $\mathbf{C}_{\text {out }}$ which equals $\mathbf{1}$ when $\mathrm{Q}_{3} \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=1111$.

Draw the complete block diagram of the counting system showing all logic components needed / used by the system

(II) Modify the counting system you designed in part (I) to make it self-resetting, i.e. whenever the system falls in any unused state, the count is automatically reset to zero.

Unused states for the mod 12 counter correspond to counts: $\mathrm{Q}_{3} \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=1100 \rightarrow 1111$ which correspond to a Boolean expression of unused- $1=\mathrm{Q}_{3} \mathrm{Q}_{2}$

Unused states for the mod 15 counter correspond to the single count: $\mathrm{Q}_{3} \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=1111$ which correspond to a Boolean expression of unused-1 $=\mathrm{Q}_{3} \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$

Once the unused state is detected, the generated signal can be used to asynchronously clear the counter.

The self-resetting logic is shown in blue.

(III) The carton boxes are 75 cm long, and are placed 100 cm apart on the conveyer belt. Signal \mathbf{X} maintains a value of $\mathbf{1}$ until the full length of the box passes beyond the sensor. Given that the belt moves at a speed of 5 meters $/ \mathrm{sec}$;

a. Plot the waveform of signal \mathbf{X} (value of X versus time).
(2 Pts)

Signal $\mathrm{X}=1$ for a period of $=\frac{0.75 \text { meters }}{5 \text { meters } / \text { sec }}=0.15$ seconds
Signal $\mathrm{X}=0$ for a period of $=\frac{1 \text { meters }}{5 \text { meters } / \text { sec }}=0.2$ seconds

b. Neglecting propagation, setup and hold delays, determine the maximum possible clock frequency. What happens if a higher frequency is used?
(2 Pts)

No more than one clock pulse may be received during the period when $\mathrm{X}=1$, otherwise one box may count more than once. Thus, the minimum clock period $=$ Period of $\mathrm{X}=1$
$\mathrm{T}_{\mathrm{Clk}}(\mathrm{min})=0.15 \mathrm{sec} \rightarrow$ Maximum frequency $f_{\max }=1 / 0.15=6.66 \mathrm{~Hz}$
c. Neglecting propagation, setup and hold delays, determine the minimum possible clock frequency. What happens if a lower frequency is used?
(2 Pts)

At least one clock pulse should be received for each X pulse, otherwise a box may pass without being counted at all.
$\mathrm{T}_{\mathrm{Clk}}(\max)=0.35 \mathrm{sec} \rightarrow$ minimum frequency $f_{\text {min }}=1 / 0.35=2.86 \mathrm{~Hz}$

Thus the clock frequency f should satisfy: $\quad 2.86 . \mathrm{Hz} \leq f \leq 6.66 \mathrm{~Hz}$

