King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)

Term 112 (Spring 2012)
Final Exam
Monday May 28, 2012

7:00 p.m. - 9:30 p.m.

Time: 150 minutes, Total Pages: 13

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	21	
2	8	
3	10	
4	15	
5	29	
6	17	
Total	100	

Question 1.

Answer the following questions by either filling the required spaces or underlining the correct answers:
i. Given a synchronous sequential circuit with 20 states, the minimum number of flip-flops required to implement the circuit is \qquad flip flops and the number of unused states is \qquad states.
(3 points)
ii. Given a synchronous sequential circuit with 3 inputs, 3 flip-flops and 2 outputs, to implement the output and next state equations using a ROM requires a ROM with
\qquad locations storing \qquad bits each
iii. The following circuits implements a 2-bit (synchronous, asynchronous) down counter.

iv. Given a 3-bit synchronous counter with outputs Q2, Q1 and Q0, assuming that the counter clock has a frequency of 16 MHZ , then the frequency of Q 0 is \qquad and the frequency of Q2 is \qquad .
v. For the circuit given below, assuming that its clock has a frequency of 14 MHZ , then the frequency of Y is \qquad .

vi. For the 3-bit register given below, given that $\mathrm{Q} 2=0, \mathrm{Q} 1=1, \mathrm{Q} 0=1$, and $\mathrm{X}=0$, the content of the register after one clock cycle will be Q2= \qquad Q1= \qquad Q0= \qquad .

vii. Given that $\mathrm{F} 1=\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{AC}, \mathrm{F} 1^{\prime}=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{AC}^{\prime}$ and $\mathrm{F} 2=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{BC} C^{\prime}+\mathrm{AB}^{\prime}, \mathrm{F}^{\prime}{ }^{\prime}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{ABC}$, to implement F 1 and F 2 using a PLA, the minimum number of AND gates needed is
\qquad .
viii. The following circuit implements a (rising, falling) -edge triggered (D flip flop, T flip flop).

ix. Given the circuit below having a JK flip flop and assuming that the current state $\mathrm{Q}=0$ and $\mathrm{X}=1$, the next state will be \qquad —.

Question 2.

It is required to design a sequence detector that detects overlapped occurrences of the sequence 10110. The circuit receives a serial input \mathbf{X} and produces a serial output \mathbf{Z}. The output Z will be 1 when the circuit detects the sequence $\mathbf{1 0 1 1 0}$. Assume the existence of a reset input to reset the machine to a reset state. Draw the state diagram of the circuit assuming a Moore model. You are not required to derive the equations and the circuit. The following is an example of some input and output streams:

Example:

Input	\mathbf{X}	0010110110101100
Output	\mathbf{Z}	0000000100100001

Question 3.

It is required to design a sequential circuit that has two inputs X and Y and one output Z . The output equals " 1 " when it receives two consecutive bits where $\mathbf{x}=\mathrm{y}$, followed by one bit where $\mathbf{x} \neq \mathbf{y}$, followed by two consecutive bits where $\mathbf{x}=\mathbf{y}$. After receiving the required sequence, the circuit starts detecting these occurrences over again without overlap. The circuit has an additional reset input R which resets the circuit into the initial state. Draw the state diagram of the circuit assuming a Mealy model. You are not required to derive the equations and the circuit. The following is an example of some input and output streams:

Example:

Question 4.

Consider the following sequential circuit:

a. Derive simplified Boolean expressions for the $\boldsymbol{D}_{\boldsymbol{A}}$ and $\boldsymbol{D}_{\boldsymbol{B}}$ inputs of the flip flops and the external output \boldsymbol{Z}.
(6 points)
b. Is the circuit type Mealy or Moore? Justify your answer.
c. Provide a state table showing \{present state and external inputs\} and \{next state and external output $\}$.
(8 points)

Question 5.

Consider the following state table:

Q_{A}	Q_{B}	X	$Q_{A}{ }^{+}$	$Q_{B}{ }^{+}$	Z
0	0	0	0	1	1
0	0	1	1	0	0
0	1	0	0	0	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	0	0	1
1	1	0	1	0	0
1	1	1	0	1	0

1. Draw the state diagram corresponding to the given state table.
2. If falling edge-triggered $\mathrm{D}-\mathrm{FF}(\mathrm{s})$ and simple gates (i.e., AND, OR, NOT gates) are to be used to implement the given state table, provide the following:
a. The simplified Boolean expressions of all FF inputs.
(4 points)
b. The simplified Boolean expression of the output.
c. The logic diagram of the circuit. Label your circuit properly.
3. If the same previous state table is implemented using a single ROM and a single register, provide the following:
a. The size of the required ROM, and its total capacity in bits.
(3 points)
b. The complete ROM table.
(2 points)
c. The block diagram of this implementation (You must CLEARLY LABEL each signal and each component inputs and outputs).
4. Consider the same previous state table which is repeated here for your convenience. Assume that the initial state of the circuit implementation of the given state table is $\left(Q_{A} Q_{B}=01\right)$, draw the waveforms of Q_{A}, Q_{B}, and Z in response to the shown applied input X. Assume that the circuit uses falling edge-triggered D-FF(s).
(9 points)

Q_{A}	Q_{B}	X	$Q_{A}{ }^{+}$	$Q_{B}{ }^{+}$	Z
0	0	0	0	1	1
0	0	1	1	0	0
0	1	0	0	0	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	0	0	1
1	1	0	1	0	0
1	1	1	0	1	0

Question 6.
(17 Points)
A mod-16 binary counter consists of 4 D-Flip Flops with inputs $\left(D_{0}, D_{1}, D_{2}, D_{3}\right)$ and corresponding outputs $\left(\mathrm{Q}_{0}, \mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}\right)$. The input equations of the counter are given by:
$D_{0}=\overline{\boldsymbol{Q}_{\mathbf{0}}}, \quad D_{1}=Q_{1} \oplus Q_{0}, \quad D_{2}=Q_{2} \oplus Q_{1} Q_{0}, \quad$ and $\quad D_{3}=Q_{3} \oplus Q_{2} Q_{1} Q_{0}$
The counter also has a carry-out signal $C_{\text {out }}=\boldsymbol{Q}_{\mathbf{3}} \boldsymbol{Q}_{\mathbf{2}} \boldsymbol{Q}_{\mathbf{1}} \boldsymbol{Q}_{\mathbf{0}}$
(I) Show, through drawing a logic diagram, how can the above design be modified to include:
a. A count enable input " $C E$ " such that if $C E=0$ counting is disabled (i.e. count does not change with incoming clock pulses) while if $C E=1$ counting is enabled.
(2 points)
b. Show how can the design in (a) be modified to include a synchronous clear input "CLR", which clears the counter on the next active clock edge when CLR $=1$.
(2 points)

Counter Function Table				
$\mathbf{L D}$	CE	CLR	Clk	Function
0	0	0	X	Counting Disabled (No change in current count)
0	1	0	\uparrow	Counting enabled
0	X	1	\uparrow	Current count $\leftarrow 0000$
1	X	X	\uparrow	Current count $\leftarrow \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}$

(II) Using the mod-16 counter in (c), show how to turn this counter into a mod-10 counter with the same input control signals (CE, CLR, and LD) and a proper carry-out signal $\mathbf{C}_{\text {out }}$. You may show your logic modifications using the symbol shown below.
(3 points)

(III) Using the mod-16 counter in (c), show how to turn this counter into a mod-6 counter with the same input control signals (CE, CLR, and LD) and a proper carry-out signal $\mathbf{C}_{\text {out }}$. You may show your logic modifications using the symbol shown above.
(3 points)
(IV) Given a 1 Hz clock, show how the counters designed in (II) and (III) can be used to build a stop watch that counts seconds (0 to 59). The counter should have a $\mathbf{C}_{\text {out }}$ signal that may be used for a minutes counter. The outputs of the mod-10 and mod 6 counters will drive two 7segment displays to be able to read the number of passed seconds in decimal (00 to 59). (5 points)

