King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 092 (Spring 2010)
Major Exam 1
Thursday March 25, 2010

Time: 120 minutes, Total Pages: 9

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	10	
2	20	
3	38	
4	15	
5	12	
Total	95	

Fill in the Spaces:

a. To assign unique codes to 214 items we need a minimum of \qquad (how many) bits. This leaves us with \qquad (how many) additional spare codes.
b. Using 5 bits to represent fractions, the smallest non-zero value that can be represented has the decimal value of \qquad .
c. One factor that may limit gate fan out is
\qquad .
d. In signed-1's complement arithmetic, the most negative decimal result that can be accommodated using 7-bit registers before an overflow occurs is \qquad .
e. Adding two signed numbers of different signs may cause overflow
\qquad (True/False).
f. Eight Tri-state gates have their outputs connected together. For normal circuit operation, at least \qquad (how many) gates should be in the Hi-Z state at any point in time.
g. The transmitted bit sequence 10110110 has the last (right-most) bit as a parity bit. The scheme uses \qquad parity (select from "even" or "odd")
h. The consensus theorem states that $\mathrm{X} Y+\bar{X} Z+Y Z=X Y+\bar{X} Z$. Accordingly, $C D+(A+B) C+(\bar{A} \bar{B}) D$ can be simplified to \qquad
i. The expressions $\mathrm{AB}+\mathrm{AC}+\overline{\mathrm{BC}}$ and \qquad are duals

Question 2.
(20 Points)

Convert the following numbers to the specified base:

$(9 \mathrm{D} .7 \mathrm{E})_{16}=(\quad)_{8}$	$(00101001)_{\text {BCD Code }}=()_{2}$
Hint: Use binary as an intermediate step	
(45.3 $)_{10}=($	

Question 3.
(38 Points)
a. Perform the following unsigned arithmetic operations in the specified number system. Show any corrective steps that may be required to obtain the final result.
(10 Points)

Octal Subtraction	Hexadecimal Addition	Binary Subtraction	Binary Multiplication
-276	1010 +58 E	1011 x 1001	

b. For the binary numbers shown below, compute their equivalent decimal values if the numbers are: unsigned, in signed magnitude representation, in 1's complement representation, or in 2's complement representation.
(16 Points)

Binary Number	Unsigned	Signed Magnitude Representation	1's Complement Representation	2's Complement Representation
111111				
010110				
110110				
100000				

c. If 7-bit registers are used, show the binary representation of the following numbers in the 2 's complement system:
(5 Points)

	2's Complement Representation
+29	
-29	
+58	
-58	

Perform the following operations in signed 2's complement indicating cases (if any) where overflow occurred.
i. $Z=(+29)-(+58)$
ii. $\mathrm{Z}=(-29)-(+58)$
iii. $Z=(-29)-(-58)$

Question 4.
a. Consider the Boolean function: $F(A, B, C)=\bar{A} \bar{B}+\bar{A} B C+A C$
i. Using Algebraic manipulation, show that F can be simplified as follows:

$$
F(A, B, C)=\bar{A} \bar{B}+C
$$

ii. Obtain the truth table of F
iii. Draw a circuit of the simplified F
b. Without any simplification, find the complement of the following expression and express the result in SOP form:

$$
\begin{equation*}
F(A, B, C)=(A+\bar{B}+C)(\bar{A} \bar{B}+C)(A+B \bar{C}) \tag{5Points}
\end{equation*}
$$

Question 5.
(12 Points)

Consider the Boolean function E and F which are given by the following truth table:

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{E}	\mathbf{F}
0	0	0	1	0
0	0	1	1	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	0
1	0	1	0	0
1	1	0	0	1
1	1	1	0	1

a. Using a numerical form (i.e. $\sum \mathrm{m}, \Pi \mathrm{M}$), list the following:
i. The minterms of F .
ii. The maxterms of F '.
iii. The minterms E + F.
b. Using an algebraic form, express the following
i. E as a sum of minterms
ii. F as a product of maxterms

