KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS COMPUTER ENGINEERING DEPARTMENT

COE 200 Fundamentals of Computer Engineering

 Term 001 Lectures| | Date | Topics | Ref. |
| :---: | :---: | :--- | :---: |
| 1 | M 4/9 | Syllabus. Introduction. Digital systems, Introduction to
 Computer Organization. | 1.1 |
| 2 | W 6/9 | Number systems: Binary, octal and hexadecimal numbers,
 number base conversion. | $1.2,1.3$ |
| 3 | S 9/9 | Binary Codes, Binary Arithmetic. Representation of signed
 numbers: sign-magnitude, 1`s complement, and 2`s complement. | $1.3,1.4$,
 handout |
| 4 | M 11/9 | Signed Binary Addition and Subtraction. | $3.9,3.10$,
 handout |
| 5 | W 13/9 | Binary logic and gates, Boolean Algebra, Basic identities of
 Boolean algebra. | $2.1,2.2$ |
| 6 | S 16/9 | Boolean functions, Algebraic manipulation, Complement of a
 function. | 2.2 |
| 7 | M 18/9 | Canonical and Standard forms, Minterms and Maxterms, Sum of
 products and Products of Sums. | 2.3 |
| 8 | W 20/9 | Map method of simplification: Two-, Three-, and Four-variable
 K-Map. | 2.4 |
| 9 | S 23/9 | Map manipulation: Essential prime implicants, Nonessential
 prime implicants, Simplification procedure. | 2.4 |
| 10 | M 25/9 | Don`t care conditions. Simplification with Don`t care
 conditions. | 2.5 |
| 11 | W 27/9 | Product-of-Sums Simplification, Five- and Six-variable K-map. | 2.5, |
| handout | | | |

19	M 16/10	Multiplexers and Demultiplexers. Function implementation using multiplexers.	3.7
20	W 18/10	Timing Analysis: Propagation Delays, Gate Delays, Rise and Fall Delays, Pulse Propagation, Inertial Delay.	Handout
21	S 21/10	Binary Adders: Ripple Carry Adder, Carry Look-Ahead Adder.	3.8
22	U 22/10	Binary Subtraction, Binary Adders/Subtractors.	3.9, 3.10
23	S 28/10	BCD Adder, Binary Multiplier.	3.11, 3.12
24	M 30/10	Sequential Circuits: Latches, SR and D-latch, Clocked latch.	4.1, 4.2
25	W 1/11	Flip-Flops: Master-Slave, Edge-Triggered.	4.3
26	S 4/11	Flip-Flops Characteristic Tables: D-FF, SR-FF, JK-FF, T-FF.	4.3
27	M 6/11	Sequential Circuit Analysis: Input equations, State table.	4.4
28	W 8/11	Sequential Circuit Analysis: State diagram, Mealy and Moore Models, Synchronizing Sequence.	4.4
29	S 11/11	Setup, Hold, Enable times. Timing control and Clocks. Path delay constraints, Clock signal design.	Handout
30	M 13/11	Sequential Circuit Design: Design procedure, Construction of state diagrams and state tables.	$\begin{gathered} \text { 4.5, } \\ \text { handout } \end{gathered}$
31	W 15/11	Designing with D-FFs. Designing with unused states. (EXAM II)	4.6
32	S 18/11	Designing with JK-FFs, Flip-Flop Excitation Tables.	4.7
33	M 20/11	Sequential Circuit Design Examples.	Handout
34	W 22/11	Sequential Circuit Design Examples.	Handout
35	S 25/11	State Reduction and State Assignment.	Handout
36	M 27/11	Registers, Registers with parallel load, Shift Registers.	5.2, 5.3
37	W 29/11	Serial addition, Shift register with parallel load, Bi-directional shift register.	5.3
38	S 2/12	Ripple Counters: Up-Down Counters.	5.4
39	M 4/12	Synchronous Binary Counters: Counters with JK-FF, Counters with D-FF.	5.5
40	W 6/12	Serial and Parallel Counter, Up-Down Binary Counter, Binary Counter with Parallel Load.	5.5
41	S 9/12	Other Counters: BCD Counter, Arbitrary Count Sequence.	5.6
42	M 11/12	Memory and Programmable Logic Devices: Read-Only Memory.	6.1, 6.7
43	W 13/12	Combinational Circuit Implementation with ROM.	6.7
44	M 1/1	Programmable logic Array, Programmable Array logic.	6.8, 6.9
45	W 3/1	Final Exam Review	

