
Data Representation

COE 202

Digital Logic Design

Dr. Aiman El-Maleh

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals

Data Representation COE 202– Digital Logic Design – KFUPM slide 2

Outline

 Introduction

 Numbering Systems

 Binary & Hexadecimal Numbers

 Base Conversions

 Binary Addition, Subtraction, Multiplication

 Hexadecimal Addition

 Binary Codes for Decimal Digits

 Character Storage

Data Representation COE 202– Digital Logic Design – KFUPM slide 3

Introduction
 Computers only deal with binary data (0s and 1s), hence all data

manipulated by computers must be represented in binary format.

 Machine instructions manipulate many different forms of data:

 Numbers:

 Integers: 33, +128, -2827

 Real numbers: 1.33, +9.55609, -6.76E12, +4.33E-03

 Alphanumeric characters (letters, numbers, signs, control characters):

examples: A, a, c, 1 ,3, ", +, Ctrl, Shift, etc.

 Images (still or moving): Usually represented by numbers representing

the Red, Green and Blue (RGB) colors of each pixel in an image,

 Sounds: Numbers representing sound amplitudes sampled at a certain

rate (usually 20kHz).

 So in general we have two major data types that need to be

represented in computers; numbers and characters.

Data Representation COE 202– Digital Logic Design – KFUPM slide 4

Numbering Systems

 Numbering systems are characterized by their base

number.

 In general a numbering system with a base r will have r
different digits (including the 0) in its number set. These

digits will range from 0 to r-1.

 The most widely used numbering systems are listed in

the table below:

Data Representation COE 202– Digital Logic Design – KFUPM slide 5

Weighted Number Systems

 A number D consists of n digits with each digit having a

particular position.

 Every digit position is associated with a fixed weight.

 If the weight associated with the ith position is wi, then

the value of D is given by:

Data Representation COE 202– Digital Logic Design – KFUPM slide 6

Example of Weighted Number Systems

 The Decimal number system (النظام العشري) is a weighted

system.

 For integer decimal numbers, the weight of the rightmost

digit (at position 0) is 1, the weight of position 1 digit is

10, that of position 2 digit is 100, position 3 is 1000, etc.

 Thus, w0 = 1, w1 = 10, w2=100, w3 = 1000, etc.

 Example:

 Show how the value of the

decimal number 9375 is

estimated.

Data Representation COE 202– Digital Logic Design – KFUPM slide 7

The Radix (Base)

 For digit position i, most weighted number systems use

weights (wi) that are powers of some constant value

called the radix (r) or the base such that wi = ri.

 A number system of radix r, typically has a set of r

allowed digits ∈ {0,1, …,(r-1)}.

 The leftmost digit has the highest weight  Most

Significant Digit (MSD).

 The rightmost digit has the lowest weight  Least

Significant Digit (LSD).

Data Representation COE 202– Digital Logic Design – KFUPM slide 8

The Radix (Base)

 Example: Decimal Number System

 1. Radix (Base) = Ten

 2. Since wi = ri, then

 w0 = 100 = 1,

 w1 = 101 = 10,

 w2= 102 = 100,

 w3 = 103 = 1000, etc.

 3. Number of Allowed Digits is Ten:

 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Data Representation COE 202– Digital Logic Design – KFUPM slide 9

The Radix Point

 A number D of n integral digits and m fractional digits is

represented as shown:

 Digits to the left of the radix point (integral digits) have
positive position indices, while digits to the right of the

radix point (fractional digits) have negative position
indices.

Data Representation COE 202– Digital Logic Design – KFUPM slide 10

The Radix Point

 Position indices of digits to the left of the radix point (the

integral part of D) start with a 0 and are incremented as

we move left (dn-1dn-2…..d2d1d0).

 Position indices of digits to the right of the radix point

(the fractional part of D) start with a -1 and are

decremented as we move right(d-1d-2…..d-m).

 The weight associated with digit position i is given by wi

= ri, where i is the position index ∀i= -m, -m+1, …, -2, -1,
0, 1, ……, n-1.

 The Value of D is Computed as:

Data Representation COE 202– Digital Logic Design – KFUPM slide 11

The Radix Point

 Example: Show how the value of the decimal number

52.946 is estimated.

Data Representation COE 202– Digital Logic Design – KFUPM slide 12

Notation

 Let (D)r denote a number D expressed in a number

system of radix r.

 In this notation, r will be expressed in decimal.

 Examples:

 (29)10 Represents a decimal value of 29. The radix “10”

here means ten.

 (100)16 is a Hexadecimal number since r = “16” here

means sixteen. This number is equivalent to a decimal

value of 162=256.

 (100)2 is a Binary number (radix =2, i.e. two) which is

equivalent to a decimal value of 22 = 4.

Data Representation COE 202– Digital Logic Design – KFUPM slide 13

Binary System

 r=2

 Each digit (bit) is either 1 or 0

 Each bit represents a power of 2

 Every binary number is a sum of powers of 2

1 1 1 1 1 1 1 1

27 26 25 24 23 22 21 20

Data Representation COE 202– Digital Logic Design – KFUPM slide 14

Binary System

 Examples: Find the decimal value of the two Binary

numbers (101)2 and (1.101)2

Data Representation COE 202– Digital Logic Design – KFUPM slide 15

Octal System

 r = 8 (Eight = 23)

 Eight allowed digits {0, 1, 2, 3, 4, 5, 6, 7}

 Examples: Find the decimal value of the two Octal

numbers (375)8 and (2.746)8

Data Representation COE 202– Digital Logic Design – KFUPM slide 16

Hexadecimal System

 r = 16 (Sixteen = 24)

 Sixteen allowed digits {0-to-9 and A, B, C, D, E, F}

Where: A = Ten, B = Eleven, C = Twelve, D = Thirteen,

E = Fourteen & F = Fifteen.

 Examples: Find the decimal value of the two

Hexadecimal numbers (9E1)16 and (3B.C)16

Data Representation COE 202– Digital Logic Design – KFUPM slide 17

Hexadecimal Integers

 Binary values are represented in hexadecimal.

Data Representation COE 202– Digital Logic Design – KFUPM slide 18

Important Properties

 The Largest value that can be expressed in n integral

digits is (rn-1).

 The Largest value that can be expressed in m fractional

digits is (1-r-m).

 The Largest value that can be expressed in n integral

digits and m fractional digits is (rn -r–m)

 Total number of values (patterns) representable in n

digits is rn.

Data Representation COE 202– Digital Logic Design – KFUPM slide 19

Important Properties

 Q. What is the result of adding 1 to the largest digit of

some number system??

 For the decimal number system, (1)10 + (9)10 = (10)10

 For the binary number system, (1)2 + (1)2 = (10)2 = (2)10

 For the octal number system, (1)8 + (7)8 = (10)8 = (8)10

 For the hexadecimal system, (1)16 + (F)16 = (10)16 = (16)10

Data Representation COE 202– Digital Logic Design – KFUPM slide 20

Important Properties

 Q. What is the largest value representable in 3-integral

digits?

 A. The largest value results when all 3 positions are filled

with the largest digit in the number system.

 For the decimal system, it is (999)10

 For the octal system, it is (777)8

 For the hex system, it is (FFF)16

 For the binary system, it is (111)2

 Q. What is the result of adding 1 to the largest 3-digit

number?

 For the decimal system, (1)10 + (999)10 = (1000)10 = (103)10

 For the octal system, (1)8+ (777)8 = (1000)8 = (83)10

Data Representation COE 202– Digital Logic Design – KFUPM slide 21

Important Properties

 In general, for a number system of radix r, adding 1 to

the largest n-digit number = rn.

 Accordingly, the value of largest n-digit number = rn - 1.

Data Representation COE 202– Digital Logic Design – KFUPM slide 22

Number Base Conversion

 Given the representation of some number (XB) in a

number system of radix B, we need to obtain the

representation of the same number in another number

system of radix A, i.e. (XA).

 For a number that has both integral and fractional parts,

conversion is done separately for both parts, and then

the result is put together with a system point in between

both parts.

 Converting Whole (Integer) Numbers

 Assume that XB has n digits (bn-1………..b2 b1 b0)B, where bi is a

digit in radix B system, i.e. bi ∈ {0, 1, ….., “B-1”}.

 Assume that XA has m digits (am-1………..a2 a1 a0)A, where ai is

a digit in radix A system, i.e. ai ∈ {0, 1, ….., “A-1”}.

Data Representation COE 202– Digital Logic Design – KFUPM slide 23

Converting Whole (Integer) Numbers

 Dividing XB by A, the remainder will be a0.

 In other words, we can write XB = Q0.A+a0

Data Representation COE 202– Digital Logic Design – KFUPM slide 24

Converting Whole (Integer) Numbers

Data Representation COE 202– Digital Logic Design – KFUPM slide 25

Converting Whole (Integer) Numbers

 This division procedure can be used to convert an

integer value from some radix number system to any

other radix number system.

 The first digit we get using the division process is a0,

then a1, then a2, till am-1

 Example: Convert (53)10 to (?)2

Data Representation COE 202– Digital Logic Design – KFUPM slide 26

Converting Whole (Integer) Numbers

 Since we always divide by the radix, and the quotient is

re-divided again by the radix, the solution table may be

compacted into 2 columns only as shown:

Data Representation COE 202– Digital Logic Design – KFUPM slide 27

Converting Whole (Integer) Numbers

 Example: Convert (755)10 to (?)8

 Example: Convert (1606)10 to (?)12

Data Representation COE 202– Digital Logic Design – KFUPM slide 28

Converting Binary to Decimal

 Weighted positional notation shows how to calculate

the decimal value of each binary bit:

Decimal = (dn-1  2n-1) + (dn-2  2n-2) + ... + (d1  21) + (d0  20)

d = binary digit

 binary 10101001 = decimal 169:

(1  27) + (1  25) + (1  23) + (1  20) = 128+32+8+1=169

Data Representation COE 202– Digital Logic Design – KFUPM slide 29

Convert Unsigned Decimal to Binary

 Repeatedly divide the decimal integer by 2. Each

remainder is a binary digit in the translated value:

37 = 100101
stop when

quotient is zero

least significant bit

most significant bit

Data Representation COE 202– Digital Logic Design – KFUPM slide 30

Another Procedure for Converting from
Decimal to Binary

 Start with a binary representation of all 0‟s

 Determine the highest possible power of two that is less

or equal to the number.

 Put a 1 in the bit position corresponding to the highest

power of two found above.

 Subtract the highest power of two found above from the

number.

 Repeat the process for the remaining number

Data Representation COE 202– Digital Logic Design – KFUPM slide 31

Another Procedure for Converting from
Decimal to Binary

 Example: Converting (76)10 to Binary

 The highest power of 2 less or equal to 76 is 64, hence the

seventh (MSB) bit is 1

 Subtracting 64 from 76 we get 12.

 The highest power of 2 less or equal to 12 is 8, hence the fourth

bit position is 1

 We subtract 8 from 12 and get 4.

 The highest power of 2 less or equal to 4 is 4, hence the third bit

position is 1

 Subtracting 4 from 4 yield a zero, hence all the left bits are set to

0 to yield the final answer

Data Representation COE 202– Digital Logic Design – KFUPM slide 32

Binary to Octal Conversion

 Each octal digit corresponds to 3 binary bits.

 Example: Convert (1110010101.1011011)2 into Octal.

Data Representation COE 202– Digital Logic Design – KFUPM slide 33

Binary to Hexadecimal Conversion

 Each hexadecimal digit corresponds to 4 binary bits.

 Example: Convert (1110010101.1011011)2 into hex.

Data Representation COE 202– Digital Logic Design – KFUPM slide 34

Binary to Hexadecimal Conversion
 Example: Translate the binary integer

000101101010011110010100 to hexadecimal

M1023.swf

Data Representation COE 202– Digital Logic Design – KFUPM slide 35

Converting Hexadecimal to Binary

 Each Hexadecimal digit can be replaced by its 4-bit

binary number to form the binary equivalent.

M1021.swf

Data Representation COE 202– Digital Logic Design – KFUPM slide 36

Converting Hexadecimal to Decimal

 Multiply each digit by its corresponding power of 16:

 Decimal = (d3  163) + (d2  162) + (d1  161) + (d0  160)

 d = hexadecimal digit

 Examples:

 (1234)16 = (1  163) + (2  162) + (3  161) + (4  160) =

 (4,660) 10

 (3BA4)16 = (3  163) + (11 * 162) + (10  161) + (4  160) =

 (15,268)10

Data Representation COE 202– Digital Logic Design – KFUPM slide 37

Converting Decimal to Hexadecimal

(422)10 = (1A6)16

stop when

quotient is zero

least significant digit

most significant digit

 Repeatedly divide the decimal integer by 16. Each

remainder is a hex digit in the translated value:

Data Representation COE 202– Digital Logic Design – KFUPM slide 38

Converting Fractions

 Assume that XB has n digits, XB = (0.b-1 b-2 b-3…….b-n)B

 Assume that XA has m digits, XA = (0.a-1 a-2 a-3…….a-m)A

Data Representation COE 202– Digital Logic Design – KFUPM slide 39

Converting Fractions

 Example: Convert (0.731)10 to (?)2

Data Representation COE 202– Digital Logic Design – KFUPM slide 40

Converting Fractions

 Example: Convert (0.731)10 to (?)8

 Example: Convert (0.357)10 to (?)12

Data Representation COE 202– Digital Logic Design – KFUPM slide 41

Binary Addition

 1 + 1 = 2, but 2 is not

allowed digit in binary

 Thus, adding 1 + 1 in the

binary system results in a

Sum bit of 0 and a Carry bit

of 1.

Data Representation COE 202– Digital Logic Design – KFUPM slide 42

Binary Addition

 Start with the least significant bit (rightmost bit)

 Add each pair of bits

 Include the carry in the addition, if present

0 0 0 0 0 1 1 1

0 0 0 0 0 1 0 0

+

0 0 0 0 1 0 1 1

1

(4)

(7)

(11)

carry:

0 1 2 3 4 bit position: 5 6 7

Data Representation COE 202– Digital Logic Design – KFUPM slide 43

Binary Subtraction

 The borrow digit is negative

and has the weight of the

next higher digit.

Data Representation COE 202– Digital Logic Design – KFUPM slide 44

Binary Multiplication

 Binary multiplication is performed similar to decimal

multiplication.

 Example: 11 * 5 = 55

Data Representation COE 202– Digital Logic Design – KFUPM slide 45

Hexadecimal Addition

 Divide the sum of two digits by the number base (16).

The quotient becomes the carry value, and the

remainder is the sum digit.

36 28 28 6A
42 45 58 4B
78 6D 80 B5

1 1

21 / 16 = 1, remainder 5

Data Representation COE 202– Digital Logic Design – KFUPM slide 46

Binary Codes for Decimal Digits

 Internally, digital computers operate on binary numbers.

When interfacing to humans, digital processors, e.g.

pocket calculators, communication is decimal-based.

 Input is done in decimal then converted to binary for

internal processing.

 For output, the result has to be converted from its

internal binary representation to a decimal form.

 To be handled by digital processors, the decimal input

(output) must be coded in binary in a digit by digit

manner.

Data Representation COE 202– Digital Logic Design – KFUPM slide 47

Binary Codes for Decimal Digits

 For example, to input the decimal number 957, each digit

of the number is individually coded and the number is

stored as 1001_0101_0111.

 Thus, we need a specific code for each of the 10 decimal

digits. There is a variety of such decimal binary codes.

 One commonly used code is the Binary Coded Decimal

(BCD) code which corresponds to the first 10 binary

representations of the decimal digits 0-9.

 The BCD code requires 4 bits to represent the 10 decimal digits.

 Since 4 bits may have up to 16 different binary combinations, a

total of 6 combinations will be unused.

 The position weights of the BCD code are 8, 4, 2, 1.

Data Representation COE 202– Digital Logic Design – KFUPM slide 48

Binary Codes for Decimal Digits

 Other codes use position weights of

 8, 4, -2, -1

 2, 4, 2, 1.

 An example of a non-weighted code is the excess-3

code

 digit codes are obtained from their binary equivalent after adding

3.

 Thus the code of a decimal 0 is 0011, that of 6 is 1001, etc.

Data Representation COE 202– Digital Logic Design – KFUPM slide 49

Binary Codes for Decimal Digits

Data Representation COE 202– Digital Logic Design – KFUPM slide 50

Number Conversion versus Coding

 Converting a decimal number into binary is done by

repeated division (multiplication) by 2

 Coding a decimal number into its BCD code is done by

replacing each decimal digit of the number by its

equivalent 4 bit BCD code.

 Example: Converting (13)10 into binary, we get 1101,

coding the same number into BCD, we obtain 00010011.

 Exercise: Convert (95)10 into its binary equivalent value

and give its BCD code as well.

 Answer: (1011111)2, and 10010101.

Data Representation COE 202– Digital Logic Design – KFUPM slide 51

Character Storage

 Character sets

 Standard ASCII: 7-bit character codes (0 – 127)

 Extended ASCII: 8-bit character codes (0 – 255)

 Unicode: 16-bit character codes (0 – 65,535)

 Unicode standard represents a universal character set

 Defines codes for characters used in all major languages

 Used in Windows-XP: each character is encoded as 16 bits

 Arabic codes: from 0600 to 06FF (hex)

 UTF-8: variable-length encoding used in HTML

 Encodes all Unicode characters

 Uses 1 byte for ASCII, but multiple bytes for other characters

Data Representation COE 202– Digital Logic Design – KFUPM slide 52

ASCII Codes

 Examples:

 ASCII code for space character = 20 (hex) = 32 (decimal)

 ASCII code for „A' = 41 (hex) = 65 (decimal)

 ASCII code for 'a' = 61 (hex) = 97 (decimal)

Data Representation COE 202– Digital Logic Design – KFUPM slide 53

Error Detection

 Binary information may be transmitted through some

communication medium, e.g. using wires or wireless

media.

 A corrupted bit will have its value changed from 0 to 1 or

vice versa.

 To be able to detect errors at the receiver end, the

sender sends an extra bit (parity bit) with the original

binary message.

Data Representation COE 202– Digital Logic Design – KFUPM slide 54

Parity Bit

 A parity bit is an extra bit included with the n-bit binary

message to make the total number of 1‟s in this

message (including the parity bit) either odd or even.

 The 8th bit in the ASCII code is used as a parity bit.

 There are two ways for error checking:

 Even Parity: Where the 8th bit is set such that the total number

of 1s in the 8-bit code word is even.

 Odd Parity: The 8th bit is set such that the total number of 1s in

the 8-bit code word is odd.

