Data Representation

COE 202

Digital Logic Design Dr. Aiman El-Maleh

College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals

Outline

- Introduction
- Numbering Systems
- Binary & Hexadecimal Numbers
- Base Conversions
- Binary Addition, Subtraction, Multiplication
- Hexadecimal Addition
- Binary Codes for Decimal Digits
- Character Storage

Introduction

- Computers only deal with binary data (0s and 1s), hence all data manipulated by computers must be represented in binary format.
- Machine instructions manipulate many different forms of data:
 - \diamond Numbers:
 - Integers: 33, +128, -2827
 - Real numbers: 1.33, +9.55609, -6.76E12, +4.33E-03
 - Alphanumeric characters (letters, numbers, signs, control characters): examples: A, a, c, 1,3, ", +, Ctrl, Shift, etc.
 - Images (still or moving): Usually represented by numbers representing the Red, Green and Blue (RGB) colors of each pixel in an image,
 - Sounds: Numbers representing sound amplitudes sampled at a certain rate (usually 20kHz).
- So in general we have two major data types that need to be represented in computers; numbers and characters.

Numbering Systems

- Numbering systems are characterized by their base number.
- In general a numbering system with a base r will have r different digits (including the 0) in its number set. These digits will range from 0 to r-1.
- The most widely used numbering systems are listed in the table below:

Numbering System	Base	Digits Set
Binary	2	10
Octal	8	76543210
Decimal	10	9876543210
Hexadecimal	16	F E D C B A 9 8 7 6 5 4 3 2 1 0

Weighted Number Systems

A number D consists of *n* digits with each digit having a particular *position*.

- Every digit *position* is associated with a *fixed weight*.
- If the weight associated with the *ith* position is *w_i*, then the value of D is given by:

$$\mathbf{D} = \mathbf{d}_{n-1} \mathbf{w}_{n-1} + \mathbf{d}_{n-2} \mathbf{w}_{n-2} + \ldots + \mathbf{d}_2 \mathbf{w}_2 + \mathbf{d}_1 \mathbf{w}_1 + \mathbf{d}_0 \mathbf{w}_0$$

Example of Weighted Number Systems

- * The Decimal number system (النظام العشري) is a weighted system.
- For integer decimal numbers, the weight of the rightmost digit (*at position 0) is* 1, the weight of *position 1* digit is 10, that of *position 2* digit is 100, *position 3* is 1000, etc.
- ✤ Thus, $w_0 = 1$, $w_1 = 10$, $w_2 = 100$, $w_3 = 1000$, etc.

Example:

Show how the value of the decimal number 9375 is estimated.

The Radix (Base)

- For *digit position i*, most weighted number systems use weights (w_i) that are powers of some constant value called the radix (*r*) or the base such that w_i = rⁱ.
- A number system of radix *r*, typically has a set of r allowed digits ∈ {0,1, ...,(r-1)}.
- ✤ The leftmost digit has the highest weight → Most Significant Digit (MSD).
- ✤ The rightmost digit has the lowest weight → Least Significant Digit (LSD).

The Radix (Base)

- Example: Decimal Number System
- ✤ 1. Radix (Base) = *Ten*
- * 2. Since $w_i = r^i$, then

$$\Rightarrow w_0 = 10^0 = 1,$$

$$\Rightarrow$$
 w₁ = 10¹ = 10,

$$\Rightarrow w_2 = 10^2 = 100,$$

 \Rightarrow w₃ = 10³ = 1000, etc.

$$\begin{array}{c|c} \text{MSD} & \text{LSD} \\ 9375 &= 5x10^0 + 7x10^1 + 3x10^2 + 9x10^3 \end{array}$$

$$= 5x1 + 7x10 + 3x100 + 9x 1000$$

Position	3	2	1	0
	1000	100	10	1
Weight	$= 10^{3}$	= 10 ²	= 10 ¹	= 10 ⁰

✤ 3. Number of Allowed Digits is Ten:

 $\diamond \ \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

The Radix Point

A number D of *n* integral digits and *m* fractional digits is represented as shown:

Digits to the left of the radix point (*integral digits*) have positive position indices, while digits to the right of the radix point (*fractional digits*) have negative position indices.

The Radix Point

- Position indices of digits to the left of the radix point (the integral part of D) start with a 0 and are incremented as we move left (d_{n-1}d_{n-2}....d₂d₁d₀).
- Position indices of digits to the right of the radix point (the fractional part of D) start with a -1 and are decremented as we move right(d₋₁d₋₂....d_{-m}).
- ★ The weight associated with digit *position i* is given by w_i = rⁱ, where *i* is the position index *∀i= -m, -m+1, ..., -2, -1, 0, 1, ..., n-1*.
- The Value of D is Computed as:

$$D = \sum_{i = -m}^{n-1} d_i r^i$$

The Radix Point

Example: Show how the value of the decimal number 52.946 is estimated.

$$D = 52.946$$

$$d_{1} d_{0} d_{-1} d_{-2} d_{-3}$$

Number	5	5 2 . 9 4 6							
Position	1	0	•	-1	-2	-3			
	10 ¹	10^{0}		10 ⁻¹	10 ⁻²	10 ⁻³			
Weight	=	=		=	=	=			
	10	1	•	0.1	0.01	0.001			
	5	2		9	4	6			
Value	х	х		х	х	х			
	10	1	•	0.1	0.01	0.001			
Value 50 + 2 + 0.9 +0.0 4 +0.006									

$$\mathbf{D} = 5\mathbf{x}\mathbf{10}^{1} + 2\mathbf{x}\mathbf{10}^{0} + 9\mathbf{x}\mathbf{10}^{-1} + 4\mathbf{x}\mathbf{10}^{-2} + 6\mathbf{x}\mathbf{10}^{-3}$$

Notation

- Let (D)_r denote a number D expressed in a number system of radix r.
- ✤ In this notation, r will be expressed in decimal.

Examples:

- (29)₁₀ Represents a decimal value of 29. The radix "10" here means ten.
- (100)₁₆ is a Hexadecimal number since r = "16" here means sixteen. This number is equivalent to a decimal value of 16²=256.
- ✤ (100)₂ is a Binary number (radix =2, i.e. two) which is equivalent to a decimal value of $2^2 = 4$.

Binary System

☆ r=2

Each digit (bit) is either 1 or 0

- Each bit represents a power of 2
- Every binary number is a sum of powers of 2

	Table 1-3	Binary Bit	Position	Values.
--	-----------	------------	----------	---------

2 ⁿ	Decimal Value	2 ⁿ	Decimal Value
2 ⁰	1	2 ⁸	256
2 ¹	2	2 ⁹	512
2 ²	4	2 ¹⁰	1024
2 ³	8	2 ¹¹	2048
24	16	212	4096
2 ⁵	32	2 ¹³	8192
2 ⁶	64	214	16384
27	128	2 ¹⁵	32768

Binary System

Examples: Find the decimal value of the two Binary numbers (101)₂ and (1.101)₂

MSB

$$(1 \ 0 \ 1)_2 = 1x2^0 + 0x2^1 + 1x2^2$$

 $= 1x1 + 0x2 + 1x4$
 $= (5)_{10}$

MSB
(1.101)₂ =
$$1x2^{0} + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$$

= 1 + 0.5 + 0 + 0.125
= (1.625)₁₀

Octal System

✤ r = 8 (Eight = 2³)

- Eight allowed digits {0, 1, 2, 3, 4, 5, 6, 7}
- Examples: Find the decimal value of the two Octal numbers (375)₈ and (2.746)₈

Hexadecimal System

- ✤ r = 16 (Sixteen = 2⁴)
- Sixteen allowed digits {0-to-9 and A, B, C, D, E, F}
- Where: A = Ten, B = Eleven, C = Twelve, D = Thirteen, E = Fourteen & F = Fifteen.
- Examples: Find the decimal value of the two Hexadecimal numbers (9E1)₁₆ and (3B.C)₁₆

MSD LSD MSD LSD
$$(9E1)_{16} = 1x16^{0} + Ex16^{1} + 9x16^{2}$$
 $(3B.C)_{16} = Cx16^{-1} + Bx16^{0} + 3x16^{1}$
 $= 1x1 + 14x16 + 9x256$ $= 12x16^{-1} + 11x16^{0} + 3x16$
 $= (2529)_{10}$ $= (59.75)_{10}$

Hexadecimal Integers

Binary values are represented in hexadecimal.

Table 1-5	Binary, Decimal, and Hexadecimal Equivalents.	

Binary	Decimal	Hexadecimal	Binary	Decimal	Hexadecimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	А
0011	3	3	1011	11	В
0100	4	4	1100	12	С
0101	5	5	1101	13	D
0110	6	6	1110	14	Е
0111	7	7	1111	15	F

- The Largest value that can be expressed in n integral digits is (rⁿ-1).
- The Largest value that can be expressed in m fractional digits is (1-r^{-m}).
- The Largest value that can be expressed in n integral digits and m fractional digits is (rⁿ -r^{-m})
- Total number of values (patterns) representable in n digits is rⁿ.

Q. What is the result of adding 1 to the largest digit of some number system??

♦ For the decimal number system, $(1)_{10} + (9)_{10} = (10)_{10}$

- ♦ For the binary number system, $(1)_2 + (1)_2 = (10)_2 = (2)_{10}$
- ♦ For the octal number system, $(1)_8 + (7)_8 = (10)_8 = (8)_{10}$
- ♦ For the hexadecimal system, $(1)_{16} + (F)_{16} = (10)_{16} = (16)_{10}$

OCTAL System

HEX System

- Q. What is the largest value representable in 3-integral digits?
- A. The largest value results when all 3 positions are filled with the largest digit in the number system.
 - \diamond For the decimal system, it is (999)₁₀
 - \diamond For the octal system, it is (777)₈
 - \diamond For the hex system, it is (FFF)₁₆
 - \diamond For the binary system, it is (111)₂
- Q. What is the result of adding 1 to the largest 3-digit number?
 - ♦ For the decimal system, $(1)_{10} + (999)_{10} = (1000)_{10} = (10^3)_{10}$
 - ♦ For the octal system, $(1)_8 + (777)_8 = (1000)_8 = (8^3)_{10}$

- In general, for a number system of radix r, adding 1 to the largest *n-digit* number = rⁿ.
- Accordingly, the value of largest *n*-digit number = $r^n 1$.

Number Base Conversion

- Given the representation of some number (X_B) in a number system of radix B, we need to obtain the representation of the same number in another number system of radix A, i.e. (X_A).
- For a number that has both integral and fractional parts, conversion is done separately for both parts, and then the result is put together with a system point in between both parts.

Converting Whole (Integer) Numbers

- ♦ Assume that X_B has n digits (b_{n-1}.....b₂ b₁ b₀)_B, where b_i is a digit in radix B system, i.e. b_i ∈ {0, 1,, "B-1"}.
- Assume that X_A has m digits (a_{m-1}....a₂ a₁ a₀)_A, where a_i is
 a digit in radix A system, i.e. a_i ∈ {0, 1,, "A-1"}.

• Dividing X_B by A, the remainder will be a_0 .

✤ In other words, we can write $X_B = Q_0 A + a_0$

 $\mathbf{Q}_0 = \mathbf{Q}_1 \mathbf{A} + \mathbf{a}_1$

 $Q_1 = Q_2A + a_2$ $Q_{m-3} = Q_{m-2}A + a_{m-2}$ $Q_{m-2} = a_{m-1} < A \text{ (not divisible by A)}$ $= Q_{m-1}A + a_{m-1}$ Where $Q_{m-1} = 0$

- This division procedure can be used to convert an integer value from some radix number system to any other radix number system.
- The first digit we get using the division process is a₀, then a₁, then a₂, till a_{m-1}
- **\therefore Example:** Convert (53)₁₀ to (?)₂

Thus (53)₁₀=(110101.)₂

Since we always divide by the radix, and the quotient is re-divided again by the radix, the solution table may be compacted into 2 columns only as shown:

755

94

 $(755)_{10}$

6

3

• Example: Convert $(755)_{10}$ to $(?)_8$

Divis	ion S	step	Quotient	Remainder		
755	÷	8	$Q_0 = 94$	$3 = a_0$	LSB	11
94	÷	8	Q ₁ =11	$6 = a_1$		1
11	÷	8	Q ₂ =1	$3 = a_2$		0
1	÷	8	0	$1 = a_3$	MSB	U

✤ Example: Convert (1606)₁₀ to (?)₁₂

1606 ÷12	•		For radix twelve, the allowed digit set is:
133 ÷12	• 10 = A 1 11 = B	LSB	{0-9, A, B}
11 ÷12	1		
0	11 = B	MSB	$(1606)_{10}$ $(B1A.)_{12}$

1363.)₈

Converting Binary to Decimal

Weighted positional notation shows how to calculate the decimal value of each binary bit:

 $Decimal = (d_{n-1} \times 2^{n-1}) + (d_{n-2} \times 2^{n-2}) + \dots + (d_1 \times 2^1) + (d_0 \times 2^0)$ d = binary digit

✤ binary 10101001 = decimal 169:

 $(1 \times 2^7) + (1 \times 2^5) + (1 \times 2^3) + (1 \times 2^0) = 128+32+8+1=169$

Convert Unsigned Decimal to Binary

Repeatedly divide the decimal integer by 2. Each remainder is a binary digit in the translated value:

Another Procedure for Converting from Decimal to Binary

- Start with a binary representation of all 0's
- Determine the highest possible power of two that is less or equal to the number.
- Put a 1 in the bit position corresponding to the highest power of two found above.
- Subtract the highest power of two found above from the number.
- Repeat the process for the remaining number

Another Procedure for Converting from Decimal to Binary

- Example: Converting (76)₁₀ to Binary
 - \diamond The highest power of 2 less or equal to 76 is 64, hence the seventh (MSB) bit is 1
 - \diamond Subtracting 64 from 76 we get 12.
 - \diamond The highest power of 2 less or equal to 12 is 8, hence the fourth bit position is 1 0 0. 1
 - \diamond We subtract 8 from 12 and get 4.
 - \diamond The highest power of 2 less or equal to 4 is 4, hence the third bit position is 1 1 0 1
 - \diamond Subtracting 4 from 4 yield a zero, hence all the left bits are set to 0 to yield the final answer

1

1

0

0

0

0

Binary to Octal Conversion

Each octal digit corresponds to 3 binary bits.

 $(b_n..., b_5 b_4 b_3 b_2 b_1 b_0, b_{-1} b_{-2} b_{-3} b_{-4} b_{-5}...)_2$

Example: Convert (1110010101.1011011)₂ into Octal.

Binary to Hexadecimal Conversion

Each hexadecimal digit corresponds to 4 binary bits.

Binary to Hexadecimal Conversion

Example: Translate the binary integer 00010110100101110010100 to hexadecimal

1	6	А	7	9	4
0001	0110	1010	0111	1001	0100

M1023.swf

Converting Hexadecimal to Binary

Each Hexadecimal digit can be replaced by its 4-bit binary number to form the binary equivalent.

Converting Hexadecimal to Decimal

Multiply each digit by its corresponding power of 16:

 $Decimal = (d3 \times 16^3) + (d2 \times 16^2) + (d1 \times 16^1) + (d0 \times 16^0)$

d = hexadecimal digit

Examples:

- ♦ $(1234)_{16} = (1 \times 16^3) + (2 \times 16^2) + (3 \times 16^1) + (4 \times 16^0) = (4,660)_{10}$
- ♦ $(3BA4)_{16} = (3 \times 16^3) + (11 * 16^2) + (10 \times 16^1) + (4 \times 16^0) = (15,268)_{10}$

Converting Decimal to Hexadecimal

Repeatedly divide the decimal integer by 16. Each remainder is a hex digit in the translated value:

$$(422)_{10} = (1A6)_{16}$$

Converting Fractions

- Assume that X_B has n digits, $X_B = (0.b_{-1} b_{-2} b_{-3} \dots b_{-n})_B$
- Assume that X_A has m digits, $X_A = (0.a_{-1} a_{-2} a_{-3}...a_m)_A$

Converting Fractions

\therefore Example: Convert $(0.731)_{10}$ to $(?)_2$

Converting Fractions

✤ Example: Convert (0.357)₁₀ to (?)₁₂

System Point 12*0.357 = 4.284 12*0.284 = 3.408 12*0.408 = 4.896 $12*0.896 = 10,752 \longrightarrow A=10$ (0.357) 10 (0.434A)₁₂ (0.434A)₁₂

Binary Addition

- 1 + 1 = 2, but 2 is not allowed digit in binary
- Thus, adding 1 + 1 in the binary system results in a Sum bit of 0 and a Carry bit

Binary Addition Table

Binary Addition

- Start with the least significant bit (rightmost bit)
- ✤ Add each pair of bits
- Include the carry in the addition, if present

Binary Subtraction

The borrow digit is negative and has the weight of the next higher digit.

Binary Multiplication

- Binary multiplication is performed similar to decimal multiplication.
- ✤ Example: 11 * 5 = 55

Multiplica	nd		1	0	1	1	
Multiplier				1	0	1	X
			1	0	1	1	
		0	0	0	0		+
	1	0	1	1			+
	1	1	0	1	1	1	

Hexadecimal Addition

Divide the sum of two digits by the number base (16). The quotient becomes the carry value, and the remainder is the sum digit.

- Internally, digital computers operate on binary numbers.
- When interfacing to humans, digital processors, e.g. pocket calculators, communication is decimal-based.
- Input is done in decimal then converted to binary for internal processing.
- For output, the result has to be converted from its internal binary representation to a decimal form.
- To be handled by digital processors, the decimal input (output) must be coded in binary in a digit by digit manner.

- For example, to input the decimal number 957, each digit of the number is individually coded and the number is stored as 1001_0101_0111.
- Thus, we need a specific code for each of the 10 decimal digits. There is a variety of such decimal binary codes.
- One commonly used code is the Binary Coded Decimal (BCD) code which corresponds to the first 10 binary representations of the decimal digits 0-9.
 - \diamond The BCD code requires 4 bits to represent the 10 decimal digits.
 - Since 4 bits may have up to 16 different binary combinations, a total of 6 combinations will be unused.
 - \diamond The position weights of the BCD code are 8, 4, 2, 1.

- Other codes use position weights of
 - ♦ 8, 4, -2, -1
 - ♦ 2, 4, 2, 1.
- An example of a non-weighted code is the excess-3 code
 - digit codes are obtained from their binary equivalent after adding
 3.
 - \diamond Thus the code of a decimal 0 is 0011, that of 6 is 1001, etc.

Decimal		BO	CD														
Digit	8 4 2			1	8	4	-2	-2 -1		2 4		2 1		Excess-3			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	
1	0	0	0	1	0	1	1	1	0	0	0	1	0	1	0	0	
2	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	1	
3	0	0	1	1	0	1	0	1	0	0	1	1	0	1	1	0	
4	0	1	0	0	0	1	0	0	0	1	0	0	0	1	1	1	
5	0	1	0	1	1	0	1	1	1	0	1	1	1	0	0	0	
6	0	1	1	0	1	0	1	0	1	1	0	0	1	0	0	1	
7	0	1	1	1	1	0	0	1	1	1	0	1	1	0	1	0	
8	1	0	0	0	1	0	0	0	1	1	1	0	1	0	1	1	
9	1	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	
U	1	0	1	0	0	0	0	1	0	1	0	1	0	0	0	0	
N	1	0	1	1	0	0	1	0	0	1	1	0	0	0	0	1	
U	1	1	0	0	0	0	1	1	0	1	1	1	0	0	1	0	
s	1	1	0	1	1	1	0	0	1	0	0	0	1	1	0	1	
E	1	1	1	0	1	1	0	1	1	0	0	1	1	1	1	0	
D	1	1	1	1	1	1	1	0	1	0	1	0	1	1	1	1	

Number Conversion versus Coding

- Converting a decimal number into binary is done by repeated division (multiplication) by 2
- Coding a decimal number into its BCD code is done by replacing each decimal digit of the number by its equivalent 4 bit BCD code.
- Example: Converting (13)₁₀ into binary, we get 1101, coding the same number into BCD, we obtain 00010011.
- Exercise: Convert (95)₁₀ into its binary equivalent value and give its BCD code as well.
- ♣ Answer: (1011111)₂, and 10010101.

Character Storage

Character sets

- \diamond Standard ASCII: 7-bit character codes (0 127)
- \diamond Extended ASCII: 8-bit character codes (0 255)
- \diamond Unicode: 16-bit character codes (0 65,535)
- ♦ Unicode standard represents a universal character set
 - Defines codes for characters used in all major languages
 - Used in Windows-XP: each character is encoded as 16 bits
 - Arabic codes: from 0600 to 06FF (hex)
- ♦ UTF-8: variable-length encoding used in HTML
 - Encodes all Unicode characters
 - Uses 1 byte for ASCII, but multiple bytes for other characters

ASCII Codes

Th	The Charcter set of the ASCII Code															
	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	ΗT	\mathbf{LF}	VΤ	FF	CR	80	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	\mathbf{FS}	GS	RS	US
2	SP	1	п	#	Ş	÷	8	1	()	*	+	,	-		1
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	0	А	В	С	D	Е	F	G	Н	I	J	K	\mathbf{L}	М	N	0
5	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	[1]	^	_
6	×.	а	b	С	d	е	f	g	h	i	j	k	1	m	n	0
7	р	q	r	з	t	u	v	W	х	У	z	{		}	\sim	DEL

Examples:

- \Rightarrow ASCII code for space character = 20 (hex) = 32 (decimal)
- \Rightarrow ASCII code for 'A' = 41 (hex) = 65 (decimal)
- \Rightarrow ASCII code for 'a' = 61 (hex) = 97 (decimal)

Error Detection

- Binary information may be transmitted through some communication medium, e.g. using wires or wireless media.
- A corrupted bit will have its value changed from 0 to 1 or vice versa.
- To be able to detect errors at the receiver end, the sender sends an extra bit (parity bit) with the original binary message.

Parity Bit

- A parity bit is an extra bit included with the n-bit binary message to make the total number of 1's in this message (including the parity bit) either odd or even.
- The 8th bit in the ASCII code is used as a parity bit.
- There are two ways for error checking:
 - Even Parity: Where the 8th bit is set such that the total number of 1s in the 8-bit code word is even.

Odd Parity: The 8th bit is set such that the total number of 1s in the 8-bit code word is odd.

