Data Representation

COE 202

Digital Logic Design
Dr. Aiman El-Maleh
College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

Outline

* Introduction
* Numbering Systems
* Binary \& Hexadecimal Numbers
* Base Conversions
* Binary Addition, Subtraction, Multiplication
* Hexadecimal Addition
* Binary Codes for Decimal Digits
* Character Storage

Introduction

* Computers only deal with binary data (0s and 1s), hence all data manipulated by computers must be represented in binary format.
* Machine instructions manipulate many different forms of data:
\checkmark Numbers:
- Integers: 33, +128, -2827
- Real numbers: 1.33, +9.55609, -6.76E12, +4.33E-03
\diamond Alphanumeric characters (letters, numbers, signs, control characters): examples: A, a, c, 1 ,3, ", +, Ctrl, Shift, etc.
\diamond Images (still or moving): Usually represented by numbers representing the Red, Green and Blue (RGB) colors of each pixel in an image,
\diamond Sounds: Numbers representing sound amplitudes sampled at a certain rate (usually 20 kHz).
* So in general we have two major data types that need to be represented in computers; numbers and characters.

Numbering Systems

* Numbering systems are characterized by their base number.
* In general a numbering system with a base r will have r different digits (including the 0) in its number set. These digits will range from 0 to $r-1$.
* The most widely used numbering systems are listed in the table below:

Numbering System	Base	Digits Set
Binary	2	10
Octal	8	76543210
Decimal	10	9876543210
Hexadecimal	16	F E D CBA 9876543210

Weighted Number Systems

* A number D consists of n digits with each digit having a particular position.

* Every digit position is associated with a fixed weight.
* If the weight associated with the i th position is w_{i}, then the value of D is given by:

$$
\mathbf{D}=\mathbf{d}_{n-1} \mathbf{w}_{n-1}+\mathbf{d}_{n-2} \mathbf{w}_{n-2}+\ldots+\mathbf{d}_{2} \mathbf{w}_{2}+\mathbf{d}_{1} \mathbf{w}_{l}+\mathbf{d}_{0} \mathbf{w}_{0}
$$

Example of Weighted Number Systems

* The Decimal number system (النظام العشري) is a weighted system.
* For integer decimal numbers, the weight of the rightmost digit (at position 0) is 1 , the weight of position 1 digit is 10 , that of position 2 digit is 100 , position 3 is 1000 , etc.
* Thus, $w_{0}=1, w_{1}=10, w_{2}=100, w_{3}=1000$, etc.
* Example:
* Show how the value of the decimal number 9375 is estimated.

First Position Index				
Position	3	2	1	0
Number	9	3	7	5
Weight	1000	100	10	1
Value	9×1000	3×100	7×10	5×1
Value	$9000+300+70+$	5		

The Radix (Base)

* For digit position i, most weighted number systems use weights $\left(w_{i}\right)$ that are powers of some constant value called the radix (r) or the base such that $w_{i}=r$.
* A number system of radix r, typically has a set of r allowed digits $\in\{0,1, \ldots,(r-1)\}$.
* The leftmost digit has the highest weight \rightarrow Most Significant Digit (MSD).
The rightmost digit has the lowest weight \rightarrow Least Significant Digit (LSD).

The Radix (Base)

* Example: Decimal Number System
* 1. Radix (Base) = Ten
* 2. Since $w_{i}=r^{i}$, then
$\diamond w_{0}=10^{\circ}=1$,
$\diamond w_{1}=10^{1}=10$,
$\diamond w_{2}=10^{2}=100$,
$\triangleleft w_{3}=10^{3}=1000$, etc.

Position	3	2	1	0
Weight	1000 $=10^{3}$	100 $=10^{2}$	10 $=10^{1}$	1 $=10^{\circ}$

* 3. Number of Allowed Digits is Ten:

४ $\{0,1,2,3,4,5,6,7,8,9\}$

The Radix Point

* A number D of n integral digits and m fractional digits is represented as shown:

* Digits to the left of the radix point (integral digits) have positive position indices, while digits to the right of the radix point (fractional digits) have negative position indices.

The Radix Point

* Position indices of digits to the left of the radix point (the integral part of D) start with a 0 and are incremented as we move left $\left(d_{n-1} d_{n-2} \ldots . . d_{2} d_{1} d_{0}\right)$.
* Position indices of digits to the right of the radix point (the fractional part of D) start with a -1 and are decremented as we move right($\left.\mathrm{d}_{-1} \mathrm{~d}_{-2} \ldots . . \mathrm{d}_{-\mathrm{m}}\right)$.
* The weight associated with digit position i is given by w_{i} $=r^{i}$, where i is the position index $\forall i=-m,-m+1, \ldots,-2,-1$, $0,1, \ldots . . ., n-1$.
* The Value of D is Computed as:

$$
D=\sum_{i=-m}^{n-1} d_{i} r^{i}
$$

The Radix Point

Example: Show how the value of the decimal number 52.946 is estimated.

Number	5	2	9	4	6
Position	1	0	-1	-2	-3
Weight	$\begin{gathered} 10^{1} \\ = \\ 10 \\ \hline \end{gathered}$	10° $=$ 1	10^{-1} $=$ 0.1	10^{-2} $=$ 0.01	10^{-3} $=$ 0.001
Value	5 x 10	2 \mathbf{x} 1	9 x 0.1	4 x 0.01	6 x 0.001
Value	$50+2+0.9+0.04+0.006$				

$$
D=5 \times 10^{1}+2 \times 10^{0}+9 \times 10^{-1}+4 \times 10^{-2}+6 \times 10^{-3}
$$

Notation

* Let (D) denote a number D expressed in a number system of radix r.
* In this notation, r will be expressed in decimal.
* Examples:
* (29) ${ }_{10}$ Represents a decimal value of 29. The radix " 10 " here means ten.
* (100) ${ }_{16}$ is a Hexadecimal number since $r=$ " 16 " here means sixteen. This number is equivalent to a decimal value of $16^{2}=256$.
$*(100)_{2}$ is a Binary number (radix $=2$, i.e. two) which is equivalent to a decimal value of $2^{2}=4$.

Binary System

* $r=2$
\star Each digit (bit) is either 1 or 0

1	1	1	1	1	1	1	1
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

* Each bit represents a power of 2
* Every binary number is a sum of powers of 2

Table 1-3 Binary Bit Position Values.

$\mathbf{2}^{\mathbf{n}}$	Decimal Value	$\mathbf{2}^{\mathbf{n}}$	Decimal Value
$2^{\mathbf{0}}$	1	2^{8}	256
2^{1}	2	2^{9}	512
2^{2}	4	2^{10}	1024
2^{3}	8	2^{11}	2048
2^{4}	16	2^{12}	4096
2^{5}	32	2^{13}	8192
2^{6}	64	2^{14}	16384
2^{7}	128	2^{15}	32768

Binary System

* Examples: Find the decimal value of the two Binary numbers (101) $)_{2}$ and (1.101) ${ }_{2}$

Octal System

* $r=8\left(\right.$ Eight $\left.=2^{3}\right)$
* Eight allowed digits $\{0,1,2,3,4,5,6,7\}$

Examples: Find the decimal value of the two Octal numbers $(375)_{8}$ and $(2.746)_{8}$

Hexadecimal System

$* r=16\left(\right.$ Sixteen $\left.=2^{4}\right)$

* Sixteen allowed digits $\{0$-to-9 and $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}$
* Where: $\mathrm{A}=$ Ten, $\mathrm{B}=$ Eleven, $\mathrm{C}=$ Twelve, $\mathrm{D}=$ Thirteen, $\mathrm{E}=$ Fourteen \& F = Fifteen.
* Examples: Find the decimal value of the two Hexadecimal numbers (9E1) ${ }_{16}$ and (3B.C $)_{16}$

MSD	LSD
$(9 E 1)_{16}$	$=1 \times 16^{0}+\operatorname{Ex} 16^{1}+9 \times 16^{2}$
	$=1 \times 1+14 \times 16+9 \times 256$
	$=(2529)_{10}$

$$
\begin{aligned}
\text { MSD } & \text { LSD } \\
(3 B . C)_{16} & =\mathrm{Cx1} 6^{-1}+\mathrm{Bx} 16^{0}+3 \times 16^{1} \\
& =12 \times 16^{-1}+11 \times 16^{0}+3 \times 16 \\
& =(59.75)_{10}
\end{aligned}
$$

Hexadecimal Integers

* Binary values are represented in hexadecimal.

Table 1-5 Binary, Decimal, and Hexadecimal Equivalents.

Binary	Decimal	Hexadecimal	Binary	Decimal	Hexadecimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	A
0011	3	3	1011	11	B
0100	4	4	1100	12	C
0101	5	6	1101	13	D
0110	6	7	1110	14	F
0111	7		111	15	

Important Properties

* The Largest value that can be expressed in n integral digits is (r^{n-1}).
* The Largest value that can be expressed in m fractional digits is ($1-r^{-m}$).
* The Largest value that can be expressed in n integral digits and m fractional digits is $\left(r^{n}-r^{-m}\right)$
* Total number of values (patterns) representable in n digits is r^{n}.

Important Properties

Q. What is the result of adding 1 to the largest digit of some number system??
\diamond For the decimal number system, $(1)_{10}+(9)_{10}=(10)_{10}$
\triangleleft For the binary number system, $(1)_{2}+(1)_{2}=(10)_{2}=(2)_{10}$
\diamond For the octal number system, $(1)_{8}+(7)_{8}=(10)_{8}=(8)_{10}$
\diamond For the hexadecimal system, $(1)_{16}+(F)_{16}=(10)_{16}=(16)_{10}$

OCTAL System

HEX System

Important Properties

* Q. What is the largest value representable in 3-integral digits?
* A. The largest value results when all 3 positions are filled with the largest digit in the number system.
\triangleleft For the decimal system, it is $(999)_{10}$
\diamond For the octal system, it is $(777)_{8}$
\diamond For the hex system, it is (FFF) ${ }_{16}$
\diamond For the binary system, it is $(111)_{2}$
* Q. What is the result of adding 1 to the largest 3-digit number?
\diamond For the decimal system, $(1)_{10}+(999)_{10}=(1000)_{10}=\left(10^{3}\right)_{10}$
\triangleleft For the octal system, $(1)_{8}+(777)_{8}=(1000)_{8}=\left(8^{3}\right)_{10}$

Important Properties

* In general, for a number system of radix r, adding 1 to the largest n-digit number $=r^{n}$.
* Accordingly, the value of largest n-digit number $=\pitchfork$ - 1 .

> Binary System

HEX System

Number Base Conversion

* Given the representation of some number $\left(\mathrm{X}_{\mathrm{B}}\right)$ in a number system of radix B, we need to obtain the representation of the same number in another number system of radix A, i.e. $\left(\mathrm{X}_{\mathrm{A}}\right)$.
* For a number that has both integral and fractional parts, conversion is done separately for both parts, and then the result is put together with a system point in between both parts.
* Converting Whole (Integer) Numbers
\diamond Assume that X_{B} has n digits $\left(b_{n-1} \ldots \ldots \ldots . b_{2} b_{1} b_{0}\right)_{B}$, where b_{i} is a digit in radix B system, i.e. $b_{i} \in\{0,1, \ldots .$. , "B-1" $\}$.
\diamond Assume that X_{A} has m digits $\left(a_{m-1} \cdots \cdots \cdots . . a_{2} a_{1} a_{0}\right)_{A}$, where a_{i} is a digit in radix A system, i.e. $a_{i} \in\{0,1, \ldots .$. , "A-1" $\}$.

Converting Whole (Integer) Numbers

$*$ Dividing X_{B} by A, the remainder will be a_{0}.

* In other words, we can write $X_{B}=Q_{0} \cdot A+a_{0}$

Converting Whole (Integer) Numbers

$\mathbf{Q}_{0}=\mathbf{Q}_{1} \mathbf{A}+\mathbf{a}_{1}$
$Q_{1}=Q_{2} A+\mathbf{a}_{2}$
$\mathbf{Q m}_{\mathbf{m}-3}=\mathbf{Q}_{\mathbf{m}-2} \mathbf{A}+\mathbf{a}_{\mathbf{m}-2}$
$\mathbf{Q}_{\mathrm{m}-2}=\mathbf{a}_{\mathrm{m}-1}<\mathbf{A}($ not divisible by $\mathbf{A})$

$$
=\mathbf{Q}_{\mathrm{m}-1} \mathbf{A}+\mathbf{a}_{\mathrm{m}-1}
$$

Where $\mathbf{Q}_{\mathbf{m}-\mathbf{1}}=0$

Converting Whole (Integer) Numbers

* This division procedure can be used to convert an integer value from some radix number system to any other radix number system.
* The first digit we get using the division process is a_{0}, then a_{1}, then a_{2}, till a_{m-1}
* Example: Convert (53) ${ }_{10}$ to (? $)_{2}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Division Step} \& Quotient \& Remainder \&

\hline 53 \& \div \& 2 \& $Q_{0}=26$ \& $\mathbf{1}=\mathbf{a}_{0}$ \& \multirow[t]{6}{*}{LSB

MSB}

\hline 26 \& \div \& 2 \& $\mathrm{Q}_{1}=13$ \& $0=\mathbf{a}_{1}$ \&

\hline 13 \& \div \& 2 \& $\mathrm{Q}_{2}=6$ \& $1=\mathbf{a}_{2}$ \&

\hline 6 \& \div \& 2 \& $Q_{3}=3$ \& $0=\mathbf{a}_{3}$ \&

\hline 3 \& \div \& 2 \& $\mathrm{Q}_{4}=1$ \& $1=\mathbf{a}_{4}$ \&

\hline 1 \& \div \& 2 \& 0 \& $\mathbf{1}=\mathbf{a}_{5}$ \&

\hline
\end{tabular}

Thus (53) ${ }_{10}=(110101 .)_{2}$

Converting Whole (Integer) Numbers

* Since we always divide by the radix, and the quotient is re-divided again by the radix, the solution table may be compacted into 2 columns only as shown:

$(51)_{10}=(110011 .)_{2}$
$(53)_{10}=(110101 .)_{2}$

Converting Whole (Integer) Numbers

Example: Convert (755) ${ }_{10}$ to (? $)_{8}$

Division Step			Quotient	Remainder	
755	\div	8	$\mathrm{Q}_{0}=94$	$3=\mathbf{a}_{0}$	LSB
94	\div	8	$\mathrm{Q}_{1}=11$	$6=\mathrm{a}_{1}$	
11	\div	8	$\mathrm{Q}_{2}=1$	$3=\mathbf{a}_{2}$	
1	\div	8	0	$1=a_{3}$	MSB

755	\bullet
94	3
11	6
1	3
0	1

$(755)_{10}$
$\longmapsto(1363 .)_{8}$
Example: Convert (1606) ${ }_{10}$ to $(?)_{12}$

$1606 \div 12$	0 133$\div 12$	$10=\mathrm{A}$
11	$\div 12$	1
0		$11=\mathrm{B}$

For radix twelve, the allowed digit set is:
LSB
$\{0-9, \mathrm{~A}, \mathrm{~B}\}$

MSB

Converting Binary to Decimal

* Weighted positional notation shows how to calculate the decimal value of each binary bit:
Decimal $=\left(d_{n-1} \times 2^{n-1}\right)+\left(d_{n-2} \times 2^{n-2}\right)+\ldots+\left(d_{1} \times 2^{1}\right)+\left(d_{0} \times 2^{0}\right)$
$d=$ binary digit
* binary $10101001=$ decimal 169:
$\left(1 \times 2^{7}\right)+\left(1 \times 2^{5}\right)+\left(1 \times 2^{3}\right)+\left(1 \times 2^{0}\right)=128+32+8+1=169$

Convert Unsigned Decimal to Binary

* Repeatedly divide the decimal integer by 2. Each remainder is a binary digit in the translated value:

Division	Quotient	Remainder	least significant bit
37/2	18	$1 \longleftarrow$	
18/2	9	0	most significant bit
9/2	4	1	
4/2	2	0	
$2 / 2$	1	0	
1/2	${ }^{0}$	1	
$37=100101$		stop w quotient	

Another Procedure for Converting from Decimal to Binary

* Start with a binary representation of all 0's
* Determine the highest possible power of two that is less or equal to the number.
* Put a 1 in the bit position corresponding to the highest power of two found above.
* Subtract the highest power of two found above from the number.
* Repeat the process for the remaining number

Another Procedure for Converting from Decimal to Binary

Example: Converting $(76)_{10}$ to Binary
\diamond The highest power of 2 less or equal to 76 is 64 , hence the seventh (MSB) bit is 1
\diamond Subtracting 64 from 76 we get 12.
\diamond The highest power of 2 less or equal to 12 is 8 , hence the fourth bit position is 1

1	0	0	1	.	.	.

\diamond We subtract 8 from 12 and get 4 .
\diamond The highest power of 2 less or equal to 4 is 4 , hence the third bit position is 1

1	0	0	1	1	.	.

\diamond Subtracting 4 from 4 yield a zero, hence all the left bits are set to 0 to yield the final answer

1	0	0	1	1	0	0

Binary to Octal Conversion

* Each octal digit corresponds to 3 binary bits.

* Example: Convert (1110010101.1011011) $)_{2}$ into Octal.

Binary to Hexadecimal Conversion

* Each hexadecimal digit corresponds to 4 binary bits.

* Example: Convert (1110010101.1011011) $)_{2}$ into hex.

Binary to Hexadecimal Conversion

* Example: Translate the binary integer 000101101010011110010100 to hexadecimal

1	6	A	7	9	4
0001	0110	1010	0111	1001	0100

Hexadecimal

Converting Hexadecimal to Binary

* Each Hexadecimal digit can be replaced by its 4-bit binary number to form the binary equivalent.

M1021.swf

Converting Hexadecimal to Decimal

* Multiply each digit by its corresponding power of 16:

$$
\text { Decimal }=\left(\mathrm{d} 3 \times 16^{3}\right)+\left(\mathrm{d} 2 \times 16^{2}\right)+\left(\mathrm{d} 1 \times 16^{1}\right)+\left(\mathrm{d} 0 \times 16^{0}\right)
$$

d = hexadecimal digit

- Examples:
$>(1234)_{16}=\left(1 \times 16^{3}\right)+\left(2 \times 16^{2}\right)+\left(3 \times 16^{1}\right)+\left(4 \times 16^{0}\right)=$ $(4,660) 10$
$\diamond(3 B A 4)_{16}=\left(3 \times 16^{3}\right)+\left(11^{*} 16^{2}\right)+\left(10 \times 16^{1}\right)+\left(4 \times 16^{0}\right)=$ $(15,268){ }_{10}$

Converting Decimal to Hexadecimal

* Repeatedly divide the decimal integer by 16. Each remainder is a hex digit in the translated value:

Division	Quotient	Remainder
$422 / 16$	26	6
	1	A least significant digit
	0	1

$$
(422)_{10}=(1 \mathrm{~A} 6)_{16}
$$

Converting Fractions

* Assume that X_{B} has n digits, $X_{B}=\left(0 . b_{-1} b_{-2} b_{-3} \ldots \ldots . b_{-n}\right)_{B}$
$*$ Assume that X_{A} has m digits, $X_{A}=\left(0 . a_{-1} a_{-2} a_{-3} \ldots \ldots . a_{-m}\right)_{A}$

Converting Fractions

Example: Convert $(0.731)_{10}$ to $(?)_{2}$

Binary Point		
$0.731 * 2=1.462$		
$0.462 * 2=0.924$		
$0.924 * 2=\mathbf{1} .848$		
$0.848 * 2=1.696$	$(0.731)_{10}=(.1011101)_{2}$	
$0.696 * 2=1.392$		
$0.392 * 2=\mathbf{0 . 7 8 4}$		
$0.784 * 2=\mathbf{1} .568$		

Converting Fractions

* Example: Convert $(0.731)_{10}$ to (? $)_{8}$

$$
\begin{array}{ll}
& \bullet \\
8 * 0.731 & =5.848 \\
8 * 0.848 & =6.784 \\
8 * 0.784 & =6.272 \\
8 * 0.272 & =2.176
\end{array} \quad(0.731)_{10}=(0.5662)_{8}
$$

* Example: Convert (0.357) $)_{10}$ to (? $)_{12}$

Binary Addition

* $1+1=2$, but 2 is not allowed digit in binary
* Thus, adding $1+1$ in the binary system results in a Sum bit of 0 and a Carry bit

Binary Addition Table

	Carry	Sum
Weight	2^{1}	$2{ }^{0}$
0 + 0	0	0
0+1	0	1
1+0	0	1
$\mathbf{1 + 1}$	$\frac{1}{4}$	${ }_{4}$
	=1x2 ${ }^{1}$	$\equiv 0 \times 2{ }^{0}$
	$\equiv+2$	

Binary Addition

* Start with the least significant bit (rightmost bit)
* Add each pair of bits
* Include the carry in the addition, if present

	carry: 1								(4)
	0	0	0	0	0	1	0	0	
+	0	0	0	0	0	1	1	1	(7)
	0	0	0	0	1	0	1	1	(11)
bit position:	7	6	5	4	3	2	1	0	

Binary Subtraction

* The borrow digit is negative and has the weight of the next higher digit.

	Borrow	Difference
Weight	-2^{1}	$+2^{0}$
0-0	0	0
1-1	0	0
1-0	0	1
0-1	1	1
	$\equiv 1 \times\left(-2^{1}\right)$	$\equiv+1 \times 2{ }^{0}$
		-1

Binary Multiplication

* Binary multiplication is performed similar to decimal multiplication.
* Example: 11 * $5=55$

Multiplicand		1	0	1	1	
Multiplier			1	0	1	\mathbf{x}
			1	0	1	1
	0	0	0	0		+
	1	0	1	1		
1	1	0	1	1	1	+

Hexadecimal Addition

* Divide the sum of two digits by the number base (16). The quotient becomes the carry value, and the remainder is the sum digit.

Binary Codes for Decimal Digits

* Internally, digital computers operate on binary numbers.
* When interfacing to humans, digital processors, e.g. pocket calculators, communication is decimal-based.
* Input is done in decimal then converted to binary for internal processing.
* For output, the result has to be converted from its internal binary representation to a decimal form.
* To be handled by digital processors, the decimal input (output) must be coded in binary in a digit by digit manner.

Binary Codes for Decimal Digits

* For example, to input the decimal number 957, each digit of the number is individually coded and the number is stored as 1001_0101_0111.
* Thus, we need a specific code for each of the 10 decimal digits. There is a variety of such decimal binary codes.
One commonly used code is the Binary Coded Decimal (BCD) code which corresponds to the first 10 binary representations of the decimal digits 0-9.
\diamond The BCD code requires 4 bits to represent the 10 decimal digits.
\diamond Since 4 bits may have up to 16 different binary combinations, a total of 6 combinations will be unused.
\diamond The position weights of the BCD code are $8,4,2,1$.

Binary Codes for Decimal Digits

* Other codes use position weights of
> $8,4,-2,-1$
$\triangleleft 2,4,2,1$.
* An example of a non-weighted code is the excess-3 code
\diamond digit codes are obtained from their binary equivalent after adding 3.
\diamond Thus the code of a decimal 0 is 0011 , that of 6 is 1001 , etc.

Binary Codes for Decimal Digits

$\begin{gathered} \hline \text { Decimal } \\ \text { Digit } \end{gathered}$	8				8	4	-2	-1	2	4	2	1		ce	s-3	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	1	1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	1	0	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	0	1	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	0	0	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	1	1	1	0	1	1	1	0	0	0
6	0	1	1	0	1	0	1	0	1	1	0	0	1	0	0	1
7	0	1	1	1	1	0	0	1	1	1	0	1	1	0	1	0
8	1	0	0	0	1	0	0	0	1	1	1	0	1	0	1	1
9	1	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0
U	1	0	1	0	0	0	0	1	0	1	0	1	0	0	0	0
N	1	0	1	1	0	0	1	0	0	1	1	0	0	0	0	1
U	1	1	0	0	0	0	1	1	0	1	1	1	0	0	1	0
S	1	1	0	1	1	1	0	0	1	0	0	0	1	1	0	1
E	1	1	1	0	1	1	0	1	1	0	0	1	1	1	1	0
D	1	1	1	1	1	1	1	0	1	0	1	0	1	1	1	1

Number Conversion versus Coding

* Converting a decimal number into binary is done by repeated division (multiplication) by 2
* Coding a decimal number into its BCD code is done by replacing each decimal digit of the number by its equivalent 4 bit BCD code.
* Example: Converting (13) ${ }_{10}$ into binary, we get 1101, coding the same number into BCD, we obtain 00010011.
* Exercise: Convert (95) ${ }_{10}$ into its binary equivalent value and give its BCD code as well.
* Answer: (1011111) ${ }_{2}$, and 10010101.

Character Storage

* Character sets
\triangleleft Standard ASCII: 7-bit character codes (0-127)
\triangleleft Extended ASCII: 8-bit character codes ($0-255$)
\triangleleft Unicode: 16-bit character codes ($0-65,535$)
\checkmark Unicode standard represents a universal character set
- Defines codes for characters used in all major languages
- Used in Windows-XP: each character is encoded as 16 bits
- Arabic codes: from 0600 to 06FF (hex)
\diamond UTF-8: variable-length encoding used in HTML
- Encodes all Unicode characters
- Uses 1 byte for ASCII, but multiple bytes for other characters

ASCII Codes

	Char	rcter	set of	the A	ASCII	Code										
	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF'	VT	FF	CR	80	SI
1	DLE	DC1	DC2	DC3	DC4	NAR	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2	SP	!		\#	\$	8	\%	'	1)	${ }^{*}$	+	,	-	.	/
3	0	1	2	3	4	5	6	7	8	9	:	;	$<$	$=$	$>$	$?$
4	0	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
5	P	Q	R	8	T	U	V	W	X	Y	Z	[,]	\wedge	
6		a	b	c	d	e	f	g	h	i	j	k	1	m	n	\bigcirc
7	P	q	r	3	t.	u	v	w	X	Y	z	,	\|	\}	\cdots	DEL

* Examples:
\triangleleft ASCII code for space character $=20$ (hex) $=32$ (decimal)
\diamond ASCII code for 'A' = 41 (hex) = 65 (decimal)
\diamond ASCII code for 'a' = 61 (hex) $=97$ (decimal)

Error Detection

* Binary information may be transmitted through some communication medium, e.g. using wires or wireless media.
* A corrupted bit will have its value changed from 0 to 1 or vice versa.
* To be able to detect errors at the receiver end, the sender sends an extra bit (parity bit) with the original binary message.

Parity Bit

* A parity bit is an extra bit included with the n-bit binary message to make the total number of 1 's in this message (including the parity bit) either odd or even.
* The 8th bit in the ASCII code is used as a parity bit.
* There are two ways for error checking:
\triangleleft Even Parity: Where the 8th bit is set such that the total number of 1 s in the 8 -bit code word is even.
P

0	1	0	0	0	0	0	1

\triangleleft Odd Parity: The 8th bit is set such that the total number of 1 s in the 8 -bit code word is odd.
P

1	1	0	0	0	0	0	1

