Standard \& Canonical Forms

CHAPTER OBJECTIVES

- Learn Binary Logic and BOOLEAN AlgebraLearn How to Map a Boolean Expression into Logic Circuit Implementation Learn How To Manipulate Boolean Expressions and Simplify ThemLesson OjectivesLearn how to derive a Boolean expression of a function defined by its truth table. The derived expressions may be in one of two possible standard forms: The Sum of Min-terms or the Product of Max-Terms.

2. Learn how to map these expressions into logic circuit implementations (2Level Implementations).

MinTerms

- Consider a system of 3 input signals (variables) $\mathrm{x}, \mathrm{y}, \& \mathrm{z}$.
- A term which ANDs all input variables, either in the true or complement form, is called a minterm.
- Thus, the considered 3-input system has 8 minterms, namely:

$$
\bar{x} \bar{y} \bar{z}, \bar{x} \bar{y} z, \bar{x} y \bar{z}, \bar{x} y z, x \bar{y} \bar{z}, x \bar{y} z, x y \bar{z} \& x y z
$$

- Each minterm equals 1 at exactly one particular input combination and is equal to 0 at all other combinations
- Thus, for example, $\bar{x} \bar{y} \bar{z}$ is always equal to 0 except for the input combination $\boldsymbol{x y z}=\mathbf{0 0 0}$, where it is equal to 1 .
- Accordingly, the minterm $\bar{x} \bar{y} \bar{z}$ is referred to as m_{0}.
a In general, minterms are designated m_{i}, where i corresponds the input combination at which this minterm is equal to 1.
- For the 3 -input system under consideration, the number of possible input combinations is 2^{3}, or 8 . This means that the system has a total of 8 minterms as follows:

$>m_{0}=\bar{x} \bar{y} \bar{z}=1$	IFF	$\boldsymbol{x y z}=\mathbf{0 0 0}$, otherwise it equals 0	
$>m_{1}$	$=\bar{x} \bar{y} z=1$	IFF	$\boldsymbol{x y z}=\mathbf{0 0 1}$, otherwise it equals 0
$>m_{2}=\overline{\boldsymbol{x}} \boldsymbol{y} \bar{z}=1$	IFF	$\boldsymbol{x y z}=\mathbf{0 1 0}$, otherwise it equals 0	
$>m_{3}=\overline{\boldsymbol{x}} \boldsymbol{y} \boldsymbol{z}=1$	IFF	$\boldsymbol{x y z}=\mathbf{0 1 1}$, otherwise it equals 0	
$>m_{4}=x \bar{y} \bar{z}=1$	IFF	$\boldsymbol{x y z}=\mathbf{1 0 0}$, otherwise it equals 0	
$>m_{5}=\boldsymbol{x} \overline{\boldsymbol{y}} \boldsymbol{z}=1$	IFF	$\boldsymbol{x y z}=\mathbf{1 0 1 ,}$, otherwise it equals 0	
$>m_{6}=\boldsymbol{x y} \overline{\boldsymbol{z}}=1$	IFF	$\boldsymbol{x y z}=\mathbf{1 1 0}$, otherwise it equals 0	
$>m_{7}=\boldsymbol{x y z}=1$	IFF	$\boldsymbol{x y z}=\mathbf{1 1 1}$, otherwise it equals 0	

In general,

- For n-input variables, the number of minterms $=$ the total number of possible input combinations $=2^{n}$.
- \quad minterm $=0$ at all input combinations except one where the minterm $=1$.

MaxTerms

- Consider a circuit of 3 input signals (variables) $x, y, \& z$.
- A term which ORs all input variables, either in the true or complement form, is called a Maxterm.
- With 3-input variables, the system under consideration has a total of 8 Maxterms, namely:

$$
(x+y+z),(x+y+\bar{z}),(x+\bar{y}+z),(x+\bar{y}+\bar{z}),(\bar{x}+y+z),(\bar{x}+y+\bar{z}),(\bar{x}+\bar{y}+z) \&(\bar{x}+\bar{y}+\bar{z})
$$

- Each Maxterm equals 0 at exactly one of the 8 possible input combinations and is equal to 1 at all other combinations.
- For example, $(\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z})$ equals 1 at all input combinations except for the combination $\boldsymbol{x y z}=\mathbf{0 0 0}$, where it is equal to 0 .
- Accordingly, the Maxterm $(\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z})$ is referred to as M_{0}.
- In general, Maxterms are designated M_{i}, where i corresponds to the input combination at which this Maxterm is equal to 0 .
- For the 3 -input system, the number of possible input combinations is 2^{3}, or 8 . This means that the system has a total of 8 Maxterms as follows:

$$
\begin{aligned}
& >M_{0}=(\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z})=0 \text { IFF } \boldsymbol{x} \boldsymbol{y} \boldsymbol{z}=\mathbf{0 0 0} \text {, otherwise it equals } 1 \\
& >M_{1}=(\boldsymbol{x}+\boldsymbol{y}+\bar{z})=0 \quad \text { IFF } \quad \boldsymbol{x y} \boldsymbol{z}=\mathbf{0 0 1} \text {, otherwise it equals } 1 \\
& >M_{2}=(\boldsymbol{x}+\overline{\boldsymbol{y}}+\boldsymbol{z})=0 \quad \text { IFF } \quad \boldsymbol{x} \boldsymbol{y} \boldsymbol{z}=\mathbf{0 1 0} \text {, otherwise it equals } 1 \\
& >M_{3}=(\boldsymbol{x}+\overline{\boldsymbol{y}}+\overline{\boldsymbol{z}})=0 \text { IFF } \boldsymbol{x y} \boldsymbol{z}=\mathbf{0 1 1} \text {, otherwise it equals } 1 \\
& >M_{4}=(\bar{x}+\boldsymbol{y}+\boldsymbol{z})=0 \text { IFF } \quad \boldsymbol{x y} \boldsymbol{z}=\mathbf{1 0 0} \text {, otherwise it equals } 1 \\
& >M_{5}=(\overline{\boldsymbol{x}}+\boldsymbol{y}+\overline{\boldsymbol{z}})=0 \text { IFF } \boldsymbol{x} \boldsymbol{y} \boldsymbol{z}=\mathbf{1 0 1} \text {, otherwise it equals } 1 \\
& >M_{6}=(\bar{x}+\overline{\boldsymbol{y}}+\boldsymbol{z})=0 \quad \text { IFF } \quad \boldsymbol{x y} \boldsymbol{z}=\mathbf{1 1 0} \text {, otherwise it equals } 1 \\
& >M_{7}=(\bar{x}+\overline{\boldsymbol{y}}+\overline{\boldsymbol{z}})=0 \quad \text { IFF } \quad \boldsymbol{x y} \boldsymbol{z}=\mathbf{1 1 1} \text {, otherwise it equals } 1
\end{aligned}
$$

In general,

- For n-input variables, the number of Maxterms $=$ the total number of possible input combinations $=2^{n}$.
- A Maxterm $=1$ at all input combinations except one where the Maxterm $=0$.

Imprtant Result

Using De-Morgan's theorem, or truth tables, it can be easily shown that:

$$
\boldsymbol{M}_{i}=\overline{\boldsymbol{m}_{i}} \quad \forall \boldsymbol{i}=0,1,2, \ldots \ldots,\left(2^{n}-1\right)
$$

Expressing Functions as a Sum of Minterms and Product of Maxterms

Example: Consider the function F defined by the shown truth table

Now let's rewrite the table, with few added columns.
$>$ A column i indicating the input combination
$>$ Four columns of minterms m_{2}, m_{4}, m_{5} and m_{7}
$>$ One last column OR-ing the above minterms $\left(m_{2}+m_{4}+m_{5}\right.$ $+m_{7}$)

x	y	z	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

\boldsymbol{i}	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	\boldsymbol{F}	\boldsymbol{m}_{2}	\boldsymbol{m}_{4}	\boldsymbol{m}_{5}	\boldsymbol{m}_{7}	$\boldsymbol{m}_{2}+\boldsymbol{m}_{4}+\boldsymbol{m}_{5}+\boldsymbol{m}_{7}$
0	0	0	0	0	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
1	0	0	1	0	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
2	0	1	0	1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
3	0	1	1	0	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
4	1	0	0	1	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
5	1	0	1	1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
6	1	1	0	0	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
7	1	1	1	1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$

- From this table, we can clearly see that $\mathrm{F}=m_{2}+m_{4}+m_{5}+m_{7}$
- This is logical since $\mathrm{F}=1$, only at input combinations $i=2,4,5$ and 7
- Thus, by ORing minterm m_{2} (which has a value of 1 only at input combination $i=2$) with minterm m_{4} (which has a value of 1 only at input combination $i=4$) with minterm m_{5} (which has a value of 1 only at input combination $i=5$) with minterm m_{7} (which has a value of 1 only at input combination $i=7$) the resulting function will equal F .
- In general, Any function can be expressed by OR-ing all minterms (m_{i}) corresponding to input combinations (i) at which the function has a value of 1.
- The resulting expression is commonly referred to as the SUM of minterms and is typically expressed as $F=\Sigma(2,4,5,7)$, where \sum indicates OR-ing of the indicated minterms. Thus, $\mathbf{F}=\Sigma(2,4,5,7)=\left(\mathrm{m}_{2}+\mathrm{m}_{4}+\mathrm{m}_{5}+\mathrm{m}_{7}\right)$

Example:

- Consider the function F of the previous example.
- We will, first, derive the sum of minterms expression for the complement function $F^{`}$.

The truth table of F ` shows that \(\mathrm{F}^{`}\) equals 1 at $i=0,1,3$ and 6 , then, $\mathrm{F}^{`}=m_{0}+m_{1}+m_{3}+m_{6}$, i.e
$\mathrm{F}^{`}=\Sigma(\mathbf{0}, \mathbf{1}, \mathbf{3}, \mathbf{6})$,
$\mathrm{F}=\Sigma(\mathbf{2}, \mathbf{4}, \mathbf{5}, \mathbf{7})$

- Obviously, the sum of minterms expression of F ` contains all
 minterms that do not appear in the sum of minterms expression of F.

Using De-Morgan theorem on equation (2),

$$
\overline{\boldsymbol{F}}=\overline{\left(\boldsymbol{m}_{2}+\boldsymbol{m}_{4}+\boldsymbol{m}_{5}+\boldsymbol{m}_{7}\right)}=\overline{\boldsymbol{m}_{2}} \cdot \overline{\boldsymbol{m}_{4}} \cdot \overline{\boldsymbol{m}_{5}} \cdot \overline{\boldsymbol{m}_{7}}=\boldsymbol{M}_{2} \cdot \boldsymbol{M}_{4 .} \boldsymbol{M}_{5 .} \boldsymbol{M}_{7}
$$

This form is designated as the Product of Maxterms and is expressed using the Π symbol, which is used to designate product in regular algebra, but is used to designate AND-ing in Boolean algebra.
Thus,

$$
\begin{equation*}
\mathbf{F}^{`}=\prod(2,4,5,7)=M_{2} \cdot M_{4} \cdot M_{5} \cdot M_{7} \tag{3}
\end{equation*}
$$

From equations (1) and (3) we get,

$$
\mathbf{F}^{`}=\Sigma(0, \mathbf{1}, \mathbf{3}, \mathbf{6})=\Pi(\mathbf{2}, \mathbf{4}, \mathbf{5}, 7)
$$

In general, any function can be expressed both as a sum of minterms and as a product of maxterms. Consider the derivation of F back from $\mathbf{F}^{`}$ given in equation (3):

$$
\begin{gathered}
\boldsymbol{F}=\overline{\overline{\boldsymbol{F}}}=\overline{\boldsymbol{m}_{0}+\boldsymbol{m}_{1}+\boldsymbol{m}_{3}+\boldsymbol{m}_{6}}=\overline{\boldsymbol{m}_{0}} \cdot \overline{\boldsymbol{m}_{1}} \cdot \overline{\boldsymbol{m}_{3}} \cdot \overline{\boldsymbol{m}_{6}}=\boldsymbol{M}_{0} \cdot \boldsymbol{M}_{1} \cdot \boldsymbol{M}_{3} \cdot \boldsymbol{M}_{6} \\
\mathbf{F}=\sum(2,4,5,7)=\prod(\mathbf{0}, \mathbf{1 , 3 , \mathbf { 6 })} \\
\mathbf{F}^{`}=\prod(2,4,5,7)=\sum(\mathbf{0}, \mathbf{1 , 3 , \mathbf { 6 })}
\end{gathered}
$$

Conclusions:

- Any function can be expressed both as a sum of minterms $\left(\sum m_{i}\right)$ and as a product of maxterms. The product of maxterms expression $\left(\Pi M_{j}\right)$ expression of F contains $\underline{\text { all maxterms }} \mathrm{M}_{j}(\forall j \neq i)$ that do not appear in the sum of minterms expression of F .
- The sum of minterms expression of $F^{\text {` }}$ contains all minterms that do not appear in the sum of minterms expression of F .
- This is true for all complementary functions. Thus, each of the 2^{n} minterms will appear either in the sum of minterms expression of F or the sum of minterms expression of \bar{F} but not both.
- The product of maxterms expression of F^{\prime} contains all maxterms that do not appear in the product of maxterms expression of F .
- This is true for all complementary functions. Thus, each of the 2^{n} maxterms will appear either in the product of maxterms expression of F or the product of maxterms expression of \bar{F} but not both.

Example:

Given that $\mathbf{F}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})=\Sigma(\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{4}, \mathbf{5}, \mathbf{7})$, derive the product of maxterms expression of \mathbf{F} and the 2 standard form expressions of $\mathbf{F}^{\text {' }}$.

Since the system has 4 input variables $(a, b, c \& d) \rightarrow$ The number of minterms and

$$
\text { Maxterms }=2^{4}=16
$$

$$
F(\mathbf{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d})=\sum(0,1,2,4,5,7)
$$

1. List all maxterms in the Product of maxterms expression $\quad \stackrel{\rightharpoonup}{F}=\Pi(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)$.

$$
F=\Pi(0,1,2,-3,4,5,6,7,8,9,10,11,12,13,14,15)
$$

2. Cross out maxterms corresponding to input combinations of the minterms appearing in the sum of minterms expression

$$
F=\Pi(3,6,8,9,10,11,12,13,14,15) .
$$

Similarly, obtain both canonical form expressions for $\mathbf{F}^{`}$

$$
\begin{aligned}
& F^{`}=\sum(3,6,8,9,10,11,12,13,14,15) . \\
& F^{`}=\Pi(0,1,2,4,5,7)
\end{aligned}
$$

Canonical Forms:

The sum of minterms and the product of maxterms forms of Boolean expressions are known as the canonical forms (الصيغ القانونية) of a function.

Standard Forms:

- A product term is a term with ANDed literals*. Thus, $\mathrm{AB}, \mathrm{A}^{\prime} \mathrm{B}, \mathrm{A}^{\prime} \mathrm{CD}$ are all product terms.
- A minterm is a special case of a product term where all input variables appear in the product term either in the true or complement form.
- A sum term is a term with ORed literals*. Thus, $(\mathrm{A}+\mathrm{B}),\left(\mathrm{A}^{\prime}+\mathrm{B}\right),\left(\mathrm{A}^{\prime}+\mathrm{C}+\mathrm{D}\right)$ are all sum terms.
- A maxterm is a special case of a sum term where all input variables, either in the true or complement form, are ORed together.
- Boolean functions can generally be expressed in the form of a Sum of Products (SOP) or in the form of a Product of Sums (POS).
- The sum of minterms form is a special case of the SOP form where all product terms are minterms.
- The product of maxterms form is a special case of the POS form where all sum terms are maxterms.
- The SOP and POS forms are Standard forms for representing Boolean functions.

[^0]
Two-Level Implementations of Standard Forms

Sum of Products Expression (SOP):

- Any SOP expression can be implemented in 2-levels of gates.
- The first level consists of a number of AND gates which equals the number of product terms in the expression. Each AND gate implements one of the product terms in the expression.
- The second level consists of a SINGLE OR gate whose number of inputs equals the number of product terms in the expression.

Example Implement the following SOP function

$$
\mathrm{F}=\mathrm{XZ}+\mathrm{Y}^{\prime} \mathrm{Z}+\mathrm{X}^{\prime} \mathrm{YZ}
$$

Level 1

Two-Level Implementation ($\mathbf{F}=\mathbf{X Z}+\mathbf{Y}^{\prime} \mathbf{Z}+\mathbf{X}^{\prime} \mathbf{Y Z}$)
Level-1: AND-Gates ;

Product of Sums Expression (POS):

- Any POS expression can be implemented in 2-levels of gates
- The first level consists of a number of OR gates which equals the number of sum terms in the expression, each gate implements one of the sum terms in the expression.
- The second level consists of a SINGLE AND gate whose number of inputs equals the number of sum terms.

Example Implement the following SOP function

$$
\mathrm{F}=(\mathrm{X}+\mathrm{Z})\left(\mathrm{Y}^{`}+\mathrm{Z}\right)\left(\mathrm{X}^{`}+\mathrm{Y}+\mathrm{Z}\right)
$$

Level 1

Two-Level Implementation $\left\{\mathbf{F}=(\mathbf{X}+\mathbf{Z})\left(\mathbf{Y}^{`}+\mathbf{Z}\right)(\mathbf{X}+\mathbf{Y}+\mathbf{Z})\right\}$
Level-1: OR-Gates ; Level-2: One AND-Gate

[^0]: * A Boolean variable in the true or complement forms

