King Fahd University of Petroleum and Minerals College of Computer Science and Engineering
 Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)

Term 162 (Winter 2016)
Major Exam 1
Saturday, March 11th, 2017

Time: 90 minutes, Total Pages: 6

Name: \qquad ID: \qquad Section: \qquad

Notes:
Do not open the exam book until instructed
Calculators are not allowed (basic, advanced, cell phones, etc.)
Answer all questions
All steps must be shown
Any assumptions made must be clearly stated

Question	Maximum Points	Your Point
1	12	
2	17	
3	19	
Total	48	

1. The decimal number 15 is represented in $\mathbf{B C D}$ as $\mathbf{0 0 0 1} _0101$ (Fill in the space).
(1 Point)
2. Given $F(A, B, C)=\sum \boldsymbol{m}(0,3,5,7)$ and $G(A, B, C)=\Pi \boldsymbol{M}(1,2,4,7)$, then $\bar{G}+F=\sum m(0,1,2,3,4,5,7) \quad$ (write $\bar{G}+F$ as a sum-of-minterms)
(2 Points)
3. The data 001010 (which contains EVEN parity for error detection) was sent four times. The received data (for these 4 times) are shown below from a to d, circle $\underline{\text { ALL }}$ the data that the receiver can't detect as being wrong:
a) $\mathbf{1 0 1 0 1 0}$
b) 001011
C) 110011
d) 000000
4. What is the minimum number of bits required to represent the $\mathbf{3 6 0}$ Latitudes? 9-bits . The number of unused codes will be $\mathbf{1 5 2}$
(Fill in the spaces)
(2 Point)
5. Given that $(521) \mathbf{X}=(337) \mathbf{1 0}$, then the Base \mathbf{X} is (circle one):
(2 Point)
a) 4
b) $\mathbf{1 6}$
C) 8
d) 6
6. For the Logic Diagram Below:

a) The logic function $F=((B+C) D+A)(E+G) \quad$ (as in the logic diagram without any re-arrangement)
b) This circuit has 4 number of logic levels (Fill in the space)
c) Assuming that all gates have a delay of 1 (each), then the longest path's (i.e. critical path) delay $=4$ (1 Point)

Question 2.

(17 Points)

1. Convert the following numbers from the given base to the other uncrossed bases listed in the table (if needed, express fractions up to $\mathbf{4}$ bits only). Show your solution steps below the table. (11 Points)

Decimal	Binary	Octal	Hexadecimal	BCD
105.25	1101001.01	151.2		
	11010.001	32.1	1 A .2	
99.625	1100011.101	143.5	$63 . \mathrm{A}$	
96	1100000			10010110

2) Perform the following arithmetic operations in the specified number system.

Question 3.

(19 Points)

1. Using Boolean Algebraic manipulations, minimize the following two functions to minimum number of literals in sum of products representation (show your work clearly step by step):
a) $F=B \bar{C}+\bar{A} D+A C+A \bar{B} \bar{C}$
(4 Points)

$$
\begin{aligned}
& =\mathbf{C}^{\prime}\left(\mathbf{B}+\mathbf{A} \mathbf{B}^{\prime}\right)+\mathbf{A}^{\prime} \mathbf{D}+\mathbf{A C}=\mathbf{B} \mathbf{C}^{\prime}+\mathbf{A} \mathbf{C}^{\prime}+\mathbf{A}^{\prime} \mathbf{D}+\mathbf{A C}=\mathbf{A}\left(\mathbf{C}^{\prime}+\mathbf{C}\right)+\mathbf{B} \mathbf{C}^{\prime}+\mathbf{A}^{\prime} \mathbf{D} \\
& =\mathbf{A}+\mathbf{A}^{\prime} \mathbf{D}+\mathbf{B} \mathbf{C}^{\prime}=\mathbf{A}+\mathbf{D}+\mathbf{B C} \mathbf{C}^{\prime}
\end{aligned}
$$

b) $F=(A+B)(\bar{A}+B C)+A C$

$$
\begin{aligned}
& =\mathbf{A}^{\prime} \mathbf{A}^{\prime}+\mathbf{A}^{\prime} \mathbf{B}+\mathbf{A B C}+\mathbf{B B C}+\mathbf{A C}=\mathbf{A C}(\mathbf{1}+\mathbf{B})+\mathbf{B C}+\mathbf{A}^{\prime} \mathbf{B}=\mathbf{A C}+\mathbf{B C}+\mathbf{A}^{\prime} \mathbf{B} \\
& =\mathbf{A C}+\mathbf{A}^{\prime} \mathbf{B} \text { (by consensus) }
\end{aligned}
$$

2. Find the complement of the following function F without performing any simplification : (2 Points)

$$
\begin{aligned}
& F=(A+B \bar{C})(\bar{A}+B C D)+\overline{A C} \\
& =\left[\mathbf{A}^{\prime}\left(\mathbf{B}^{\prime}+\mathbf{C}\right)+\mathbf{A}\left(\mathbf{B}^{\prime}+\mathbf{C}^{\prime}+\mathbf{D}^{\prime}\right)\right] \mathbf{A C}
\end{aligned}
$$

3. Given the function $F(A, B, C)$ represented in the given truth table: (4 Points)
a) Express F in algebraic form as a sum-of-minterms. (2 Points)
b) Express F in algebraic form as a product of maxterms. (2 Points)
a) $F(A, B, C)=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+A B^{\prime} C^{\prime}+A B C^{\prime}$
b) $F(A, B, C)=\left(A+B^{\prime}+C\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)$

A	B	C	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

4. Using Canonical forms, determine whether the following two functions are equivalent or not: (5 Points)

$$
\begin{aligned}
& F_{1}(A, B, C)=\bar{A} \bar{B}+A B \bar{C} \\
& F_{2}(A, B, C)=(A+\bar{B})(\bar{A}+B)(\bar{B}+\bar{C})
\end{aligned}
$$

F1: A' B' -> 00- => m0, m1; A B C' => m6 Thus F1 $=\sum \mathrm{m}(0,1,6)$

F2: $\left(\mathrm{A}+\mathrm{B}^{\prime}\right)=>01-=>\mathrm{M} 2, \mathrm{M} 3$
$\left(A^{\prime}+B\right)=>10-\Rightarrow$ M4, M5 $\left(B^{\prime}+C^{\prime}\right)=>-11 \Rightarrow$ M3, M7

Thus, $\mathrm{F} 2=\Pi \mathrm{M}(2,3,4,5,7)=\sum \mathrm{m}(0,1,6)$
Thus, F1 = F2 since they have the same set of minterms.

