Question 1: Fill in the Spaces: (Show all work needed to obtain your answer)
(13 points)
a. To represent the decimal number 65 in binary we need \qquad (how many) bits.
[1 point] Solution:

$$
\text { Required bits }=\left\lfloor\log _{2} 65\right\rfloor+1=\lfloor 6.02\rfloor+1=\mathbf{7} \text { bits }
$$

b. $(1324)_{5}=($ \qquad $)_{10}$
[2 points]
Solution:

$$
(1324)_{5}=1 \times 5^{3}+3 \times 5^{2}+2 \times 5^{1}+4 \times 5^{0}=125+75+10+4=(\mathbf{2 1 4})_{10}
$$

c. A communication system uses a 1-bit parity scheme for error detection. The receiver receives a byte represented in hexadecimal as D3 without error. The parity scheme used is \qquad (even/odd) parity.
[1 point]
Solution:

$$
\begin{aligned}
& (D 3)_{16}=(11010011)_{2} \\
& \text { count of } 1^{\prime} s=5 \\
& 5 \text { mod } 2=1, \quad 0: \text { even, } 1: \text { odd } \\
& \text { odd }
\end{aligned}
$$

d. For 5 variables $(A, B, C, D, E), m_{13}=$ \qquad (algebraic expression), while the algebraic expression ($\overline{\mathrm{A}}+\mathrm{B}+\overline{\mathrm{C}}+\overline{\mathrm{D}}+\mathrm{E}$) represents the maxterm M ? \qquad .
[2 points]
Solution:

$$
\begin{aligned}
& (13)_{10}=(01101)_{2} \\
& m_{13}=\overline{\boldsymbol{A}} \boldsymbol{B} \boldsymbol{C} \overline{\boldsymbol{D}} \boldsymbol{E}
\end{aligned}
$$

$$
(\bar{A}+B+\bar{C}+\bar{D}+E) \rightarrow(10110)_{2}=(22)_{10}
$$

$$
(\bar{A}+B+\bar{C}+\bar{D}+E) \text { represents the maxterm } \boldsymbol{M}_{22}
$$

e. The canonical form (sum of minterms or product of maxterms) represents the most simplified form of a logic function \qquad (True/False).
[1 Point] Solution: False
f. The number of minterms and maxterms in the function $F(A, B, C)=A+B+\bar{C}$ is \qquad minterms and \qquad maxterms.
Solution:

$$
\begin{aligned}
F(A, B, C)=A & +B+\bar{C}=A(B+\bar{B})(C+\bar{C})+B(A+\bar{A})(C+\bar{C})+\bar{C}(A+\bar{A})(B+\bar{B}) \\
& =A B C+A B \bar{C}+A \bar{B} C+A \bar{B} \bar{C}+A B C+A B \bar{C}+\bar{A} B C+\bar{A} B \bar{C}+A B \bar{C}+A \bar{B} \bar{C} \\
& +\bar{A} B \bar{C}+\bar{A} \bar{B} \bar{C}=\sum m(0,2,3,4,5,6,7)=\prod M(1)
\end{aligned}
$$

7 minterms, 1 maxterm
g. Given the identity: $A B+\bar{A} C+B C=A B+\bar{A} C$, using the duality principle $(A+B)(\bar{A}+C)(B+C)=$ \qquad . The property/theorem is known as \qquad theorem.
[2 points]
Solution:
$(A+B)(\bar{A}+C)$
consensus theorem
h. For the logic circuit shown below, assuming that all gates have the same propagation delay of $\mathbf{2} \mathbf{n s}$, then the circuit takes \qquad ns to produce the correct output.
[2 points]

Solution:
The worst-case propagation delay from input to output is the delay of the path containing the maximum number of logic gates, since all gates have the same propagation delay. This path is: AND-OR-AND-OR
The mentioned path contains 4 logic gates each with propagation delay of 2 ns . So, the circuit takes $4 \times 2=\mathbf{8}$ ns to produce the correct output.

Question 2: Perform the following conversions:
i. $(110100.011)_{2}$ to decimal.
ii. (59.7) $)_{10}$ to binary (use up to 4 fractional bits accuracy).
$(59.7)_{10}=(111011.1011)_{2}$
iii. (651.13) 8 to hexadecimal.

Question 3: Without converting to other bases, find the result of the following arithmetic operations:
i. $(57.6)_{16}+(4 \mathrm{E} .7)_{16}$
(57.6) ${ }_{16}$
$\begin{array}{r}+(4 \mathrm{E} .7)_{16} \\ \hline(\mathrm{~A} 5 . \mathrm{D})_{16}\end{array}$
ii. $(111)_{2} \times(110)_{2}$
$(111)_{2}$
$\frac{\times(110)_{2}}{(000)_{2}}$
$(111)_{2}$
$(111)_{2}$
$(101010)_{2}$
iii. $(110100)_{2}-(100101)_{2}$
$(110100)_{2}$
$\frac{-(100101)_{2}}{(001111)_{2}}$

Question 4:

a) List all the Minterms and Maxterms of the following Boolean function (using the $\boldsymbol{\Sigma}$ and $\boldsymbol{\Pi}$ notations):

$$
f(x, y, z)=x y+\left(x^{\prime}+z\right)\left(y+z^{\prime}\right)
$$

[4 points]

Solution: Truth table for f

$x y z$	$x y$	$\left(x^{\prime}+z\right)$	$\left(y+z^{\prime}\right)$	$\left(x^{\prime}+z\right)\left(y+z^{\prime}\right)$	f
000	0	1	1	1	1
001	0	1	0	0	0
010	0	1	1	1	1
011	0	1	1	1	1
100	0	0	1	0	0
101	0	1	0	0	0
110	1	0	1	0	1
111	1	1	1	1	1

List of minterms $=\sum(0,2,3,6,7)=m_{0}+m_{2}+m_{3}+m_{6}+m_{7}$
List of Maxterms $=\Pi(1,4,5)=M_{1} \cdot M_{4} \cdot M_{5}$
b) Given the following Boolean functions f and g :

$$
\begin{aligned}
& f(x, y, z)=\sum(1,3,6) \\
& g(x, y, z)=\sum(0,2,4,6,7)
\end{aligned}
$$

i) Write an algebraic expression for f as a sum-of-minterms
ii) Write an algebraic expression for $\left(f^{\prime} \cdot g\right)$ as a product-of-maxterms

Solution:

i) $f(x, y, z)=\sum(1,3,6)=x^{\prime} y^{\prime} z+x^{\prime} y z+x y z^{\prime}$
ii) $f^{\prime}=\sum(0,2,4,5,7)$
$f^{\prime} \cdot g=\sum(0,2,4,7)=\Pi(1,3,5,6)=\left(x+y+z^{\prime}\right)\left(x+y^{\prime}+z^{\prime}\right)\left(x^{\prime}+y+z^{\prime}\right)\left(x^{\prime}+y^{\prime}+z\right)$

Question 5: Consider the following circuit with two outputs f and g.
a) Write an expression for the output f as a sum-of-products
b) Write an expression for the output g as a product-of-sums

Solution:

$$
\begin{aligned}
& f=b c^{\prime} d+a^{\prime} c \\
& g=\left(a^{\prime} c+b^{\prime} d^{\prime}\right)^{\prime}=\left(a+c^{\prime}\right)(b+d)
\end{aligned}
$$

Question 6: Find the complement of each of the function below as they are (i.e. do not change or simplify them first):
a) $\mathrm{F}=(\mathrm{XY}+\mathrm{Z}) \cdot \overline{\mathrm{W}} \cdot(\mathrm{E}+\overline{\mathrm{D}})$
[2 Points]
b) $\mathrm{G}=\mathrm{A}+\mathrm{D}+\mathrm{B} \cdot \mathrm{C} \cdot \overline{\mathrm{E}}$
[2 Points]
a) $\mathrm{F}^{\prime}=\left(\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}\right) \mathrm{Z}^{\prime}+\mathrm{W}+\mathrm{E}^{\prime} \mathrm{D}$
b) $\mathrm{G}^{\prime}=\mathrm{A}^{\prime} \mathrm{D}^{\prime}\left(\mathrm{B}^{\prime}+\mathrm{C}^{\prime}+\mathrm{E}\right)$

Question 7: Using Boolean Algebra and showing all steps of your work:
i. Proof that: $\quad \bar{X}(\overline{\mathrm{Y}}+\mathrm{Z})=\overline{\mathrm{X}} \overline{\mathrm{Z}}+\overline{\mathrm{X}} \overline{\mathrm{Y}}+\mathrm{XY} \overline{\mathrm{Z}}+\overline{\mathrm{X}} \mathrm{YZ}$

Solution:

$$
\begin{aligned}
& X^{\prime}+Y Z \text { (LFS) } \\
& \text { RHS }=X^{\prime}\left(Z^{\prime}+Y Z\right)+X^{\prime} Y^{\prime}+X Y Z ' \\
& =X^{\prime} Z^{\prime}+X^{\prime} Y+X^{\prime} Y^{\prime}+X Y Z ' \\
& =Z^{\prime}\left(X^{\prime}+X Y\right)+X^{\prime}\left(Y+Y^{\prime}\right) \\
& =X^{\prime}+X^{\prime} Z^{\prime}+Y Z^{\prime} \\
& =X^{\prime}\left(1+Z^{\prime}\right)+Y Z^{\prime} \\
& =X^{\prime}+\mathrm{YZ}^{\prime}=\mathrm{LHS}
\end{aligned}
$$

ii. Simplify the following function to minimum number of literals in SOP form:

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(8,10,12,14)
$$

$$
\begin{aligned}
& \text { Solution: } \\
& 1^{\text {st }} \text { we express } \mathrm{F} \text { algebraically } \\
& \mathrm{F}=\mathrm{AB} \mathrm{~B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{AB} \mathrm{~A}^{\prime} \mathrm{CD} D^{\prime}+\mathrm{ABC} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{ABCD} \\
& =\mathrm{AD}{ }^{\prime}\left(\mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{B}^{\prime} \mathrm{C}+\mathrm{BC}^{\prime}+\mathrm{BC}\right) \\
& =\mathrm{AD} \mathrm{D}^{\prime}\left(\mathrm{B}^{\prime}\left(\mathrm{C}^{\prime}+\mathrm{C}\right)+\mathrm{B}\left(\mathrm{C}^{\prime}+\mathrm{C}\right)\right) \mathrm{AD}^{\prime}\left(\mathrm{B}^{\prime}+\mathrm{B}\right) \\
& =\mathrm{AD}
\end{aligned}
$$

