King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3) Term 132 (Spring 2013) Major Exam II Saturday April 19, 2014

Time: 120 minutes, Total Pages: 12

Section:

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	8	
2	12	
3	8	
4	12	
5	13	
6	10	
7	7	
Total	70	

Question 1

[8 Points]

Shown to the right is the K-Map of the Boolean function **F** subject to the don't care conditions **d**

$$\mathbf{F}(A, B, C, D) = \sum (0, 1, 2, 4, 6, 10, 12)$$

$$\mathbf{d}(A, B, C, D) = \sum (7, 13, 14, 15)$$

a) Derive the minimum **SOP** expression of F.

AB	00	01	11	10
00	1	1	0	1
01	1	0	х	1
11	1	х	х	х
10	0	0	0	1

,B CD	00	01	11	10
00	1	1	0	1
01	1	0	х	1
11	1	х	х	х
10	0	0	0	1

$$F = C\overline{D} + B\overline{D} + \overline{A}\,\overline{B}\,\overline{C}$$

Shown to the right is the K-Map of the Boolean function ${\bf G}$ subject to the don't care conditions ${\bf D}$

G(A, B, C, D) =
$$\Sigma$$
(1, 4, 5, 6, 9, 12)
D(A, B, C, D) = Σ (0, 7, 10, 13, 15)

b) Derive the minimum **POS** expression of **G**.

AB CD	0	01	11	10
00	X	1	0	0
01	1	1	х	1
11	1	х	х	0
10	0	1	0	X

CD	00	01	11	10
00	X	1	0	0
01	1	1	х	1
11	1	Х	Х	0
10	0	1	0	Х

Alternatively $G = (B + D)(\bar{A} + \bar{C})(B + \bar{C})$

Question 2 [12 Points]

A logic circuit has <u>two</u> inputs x & y each is a 2-bit <u>unsigned</u> number. It has an output number z such that $z = x^2 + y^2$.

- a. What is the minimum number of bits required for the output number *z*?
- b. Construct the truth table of the circuit.
- c. Derive the Boolean expressions of the two least significant output bits (z_0, z_1) using basic gates (NO MSI parts)

Solution:

a. Max (z) = $(3)^2 + (3)^2 = 18 \rightarrow \text{Requires 5-Bits} \rightarrow \text{Outputs} : Z_4 Z_3 Z_2 Z_1 Z_0$

x ₁ x ₀ y ₁ y ₀	00	01	11	10
00	0	1	1	0
01	1	0	0	1
11	1	0	0	1
10	0	1	1	0
'				

$$Z_0 = \overline{x_0} \ y_0 + \overline{y_0} \ x_0$$
$$= y_0 \oplus x_0$$

\mathbf{x}_1	\mathbf{X}_0	y 1	$\mathbf{y_0}$	L ₄	L_3	L_2	\mathbf{L}_1	\mathcal{L}_0
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1
0	0	1	0	0	0	1	0	0
0	0	1	1	0	1	0	0	1
0	1	0	0	0	0	0	0	1
0	1	0	1	0	0	0	1	0
0	1	1	0	0	0	1	0	1
0	1	1	1	0	1	0	1	0
1	0	0	0	0	0	1	0	0
1	0	0	1	0	0	1	0	1
1	0	1	0	0	1	0	0	0
1	0	1	1	0	1	1	0	1
1	1	0	0	0	1	0	0	1
1	1	0	1	0	1	0	1	0
1	1	1	0	0	1	1	0	1
1	1	1	1	1	0	0	1	0

$$Z_1 = y_0 x_0$$

Question 3 [8 Points]

a. Assuming the availability of the true and complement of signals A, B, C, and D, implement the function $\mathbf{F} = \mathbf{ABC} + \mathbf{DB'C'} + \mathbf{A'}$ using a minimum number of one gate type only.

b. Assuming the availability of the true and complement of signals A, B, C, and D, implement the function $\mathbf{F} = (\mathbf{A} + \mathbf{B} + \mathbf{C}) (\mathbf{D} + \mathbf{B'} + \mathbf{C'}) \cdot \mathbf{D}$ using a minimum number of one gate type only.

c. Assuming the availability of the true and complement of signals A, B, C, D and E, implement the shown circuit using minimum number of NAND gates only.

Question 4. (12 Points)

Assuming that all numbers are held in 6-bit storage registers, answer the following:

a. If 2's complement binary representation is used, what is the range of values that each number may assume?(2 points)

$$-2^5$$
 to $2^5 - 1$ [-32, 31]

- c. Perform the following arithmetic operations *in the indicated number representation*. Then, convert the result to decimal and indicate if an *overflow* has occurred: **(8 points)**
 - (i) $(10)_{10}$ $(24)_{10}$ (using sign-magnitude binary representation).

(ii) 010010 –111111 (using 1's complement binary representation).

```
010010 + 000000 = 010010 =18
```

No overflow

(iii) 100000 –100011 (using 2's complement binary representation).

```
=100000 + 011101

100000

011101+

111101

=-000011=-3

No overflow
```

(iv) 010111 – 11 0111 (using 2's complement binary representation).

```
=010111 + 001001

010111

001001+

100000

=-32
```

→ No overflow

Question 5. (13 Points)

the Boolean function: $F(A, B, C) = AB + \overline{A}C + \overline{A}\overline{B}$

- a. Using a single 4x1 multiplexer. (4 Points)
- b. Using a minimum number of 2x1 multiplexers. (2 Points)
- c. Using a single 3x8 decoder and an OR gate. (3 Points)
- d. Using a single NOR gate and the minimum number of 2x4 decoders with enable. (4 Points)

a.
$$F = \overline{AB} [1] + \overline{AB} [C]$$

+ $\overline{AB} [0] + \overline{AB} [1]$

b.

c.
$$F = \sum m(0,1,3,6,7)$$

8.

Question 6. (10 Points)

a. Design a 4-bit adder/subtractor circuit which uses the least number of Full-Adders (FAs). The circuit receives two 4-bit signed numbers **A** and **B** (2's complement representation) and one control input (M). If the control input M =0, the 4-bit circuit output equals (**A+B**). If the control input M =1, it equals (**A-B**). The circuit has another output **V** which equals **1 only** in case of *overflow*.

Gate	Delay (ns)
AND	2
OR	2
XOR	3

b. Given the FA circuit shown below, calculate the worst-case delay of this adder/subtractor circuit assuming gate delays as given in the table to the right.

 $Delay = 3 ext{ for } B ext{ xor} + 3 ext{ for } 1 ext{st } HA + 4 imes (4 ext{ for } 2 ext{nd } HA ext{ with } C ext{ } OR) + 3 ext{ for } v ext{ xor}$ Delay = 25

Question 7. (7 Points)

A 4-bit adder/subtrctor circuit like the one designed in problem 6, is used here as a **subtractor** with the input control **M=1** (see Figure).

It subtracts two 4-bit numbers (A, and B) producing a 4-bit result (X). It also produces the overflow flag V, and C_{out} .

This **subtractor** can be used to compare both *unsigned* and *signed* 4-bit input numbers (**A** and **B**) by computing (**A-B**). It can be shown that the comparator output ($A \ge B$) is given by:

Type of Input Operands (A & B)	Comparator Output $(A \ge B)$
Unsigned	$= 1 \text{ iff } \mathbf{C}_{\text{out}} = 1$
	= 0 otherwise
Signed	= 1 iff $\mathbf{V} = \mathbf{Sign}$ of the result \mathbf{X}
(2's Complement)	= 0 Otherwise

Using this subtractor, design a circuit that compares two 4-bit input numbers A_{3-0} and B_{3-0} to output the larger of the two. The input numbers (A & B) <u>may be signed or unsigned</u>. An additional input signal S indicates whether the input numbers are **signed** (S=1) or **unsigned** (S=0).

In addition to the subtractor, you <u>may use</u> multiplexers of any size, and other needed gates. <u>You MAY</u> <u>NOT USE</u> any magnitude comparator. (7 Points)

