King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 132 (Spring 2013)
Major Exam II
Saturday April 19, 2014

Time: $\mathbf{1 2 0}$ minutes, Total Pages: 12

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	8	
2	12	
3	8	
4	12	
5	13	
6	70	
7	7	
Total		

Question 1

[8 Points]
Shown to the right is the K-Map of the Boolean function \mathbf{F} subject to the don't care conditions \mathbf{d}

$$
\begin{aligned}
& \mathbf{F}(\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(0,1,2,4,6,10,12) \\
& \mathbf{d}(\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(7,13,14,15)
\end{aligned}
$$

a) Derive the minimum SOP expression of F .

${ }_{\text {AB }}{ }^{\text {cD }}$	00	01	11	10
00	1	1	0	1
01	1	0	X	1
11	1	X	X	X
10	0	0	0	1

${ }_{A B}{ }^{C D}$	00	01	11	10
00	1	1	0	1
01	1	0	X	1
11	1	X	X	X
10	0	0	0	1

Shown to the right is the K-Map of the Boolean function \mathbf{G} subject to the don't care conditions \mathbf{D}
$\mathbf{G}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,4,5,6,9,12)$
$\mathbf{D}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,7,10,13,15)$
b) Derive the minimum POS expression of G.

$$
G=(B+D)(\bar{A}+\bar{C})(\bar{C}+\bar{D})
$$

	00	01	11	10
00	X	1	0	0
01	1	1	X	1
11	1	X	X	0
10	0	1	0	X

Alternatively

$$
G=(B+D)(\bar{A}+\bar{C})(B+\bar{C})
$$

Question 2

A logic circuit has two inputs $\boldsymbol{x} \& \boldsymbol{y}$ each is a 2-bit unsigned number. It has an output number z such that $z=x^{2}+y^{2}$.
a. What is the minimum number of bits required for the output number \mathbf{z} ?
b. Construct the truth table of the circuit.

c. Derive the Boolean expressions of the two least significant output bits ($\mathbf{z}_{\mathbf{0}}, \mathbf{z}_{\mathbf{1}}$) using basic gates (NO MSI parts)

Solution:

a. $\operatorname{Max}(\mathrm{z})=(3)^{2}+(3)^{2}=18 \rightarrow$ Requires 5-Bits \rightarrow Outputs: $Z_{4} Z_{3} Z_{2} Z_{1} Z_{0}$

$$
\begin{aligned}
Z_{0} & =\overline{x_{0}} y_{0}+\overline{y_{0}} x_{0} \\
& =y_{0} \oplus x_{0}
\end{aligned}
$$

$\mathrm{X}_{1} \mathrm{X}_{0} \mathrm{y}_{1} \mathrm{y}_{0}$	$\mathrm{Z}_{4} \mathbf{Z}_{3} \mathrm{Z}_{2} \mathrm{Z}_{1} \mathrm{Z}_{0}$
$\begin{array}{lllll}\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}\end{array}$	$\mathbf{0}$ 0 0 0 0 0
$\begin{array}{lllll}0 & 0 & 0 & 1\end{array}$	$\begin{array}{llllll}0 & 0 & 0 & 0 & 1\end{array}$
0 0 0 $\quad 1.10$	$0 \begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}$
$\begin{array}{lllll}0 & 0 & 0 & 1 & 1\end{array}$	$\begin{array}{llllll}0 & 1 & 0 & 0 & 1\end{array}$
$\begin{array}{lllll}0 & 1 & 0 & 0\end{array}$	$\begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}$
$\begin{array}{lllll}0 & 1 & 0 & 1\end{array}$	$0 \begin{array}{lllll}0 & 0 & 0 & 1 & 0\end{array}$
$\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$	$\begin{array}{llllll}0 & 0 & 1 & 0 & 1\end{array}$
$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	$\begin{array}{llllll}0 & 1 & 0 & 1 & 0\end{array}$
$\begin{array}{lllll}1 & 0 & 0 & 0\end{array}$	$0 \begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}$
$\begin{array}{lllll}1 & 0 & 0 & 1\end{array}$	$\begin{array}{llllll}0 & 0 & 1 & 0 & 1\end{array}$
$\begin{array}{lllll}1 & 0 & 1 & 0\end{array}$	$\begin{array}{llllll}0 & 1 & 0 & 0 & 0\end{array}$
1 0 1 1 1	$\begin{array}{llllll}0 & 1 & 1 & 0 & 1\end{array}$
$\begin{array}{lllll}1 & 1 & 0 & 0\end{array}$	$\begin{array}{llllll}0 & 1 & 0 & 0 & 1\end{array}$
$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$	$\begin{array}{llllll}0 & 1 & 0 & 1 & 0\end{array}$
$\begin{array}{lllll}1 & 1 & 1 & 0\end{array}$	$\begin{array}{llllll}0 & 1 & 1 & 0 & 1\end{array}$
1111	1000010

	00	01	11	10
00	0	0	0	0
01	0	1	1	0
11	0	1	1	0
10	0	0	0	0

$$
Z_{1}=y_{0} x_{0}
$$

Question 3

a. Assuming the availability of the true and complement of signals A, B, C, and D, implement the function $\mathbf{F}=\mathbf{A B C}+\mathbf{D B}^{\prime} \mathbf{C}^{\prime}+\mathbf{A}^{\prime}$ using a minimum number of one gate type only.

b. Assuming the availability of the true and complement of signals A, B, C, and D, implement the function $F=(\mathbf{A}+\mathbf{B}+\mathbf{C})\left(\mathbf{D}+\mathbf{B}^{\prime}+\mathbf{C}^{\prime}\right) . \mathbf{D}$ using a minimum number of one gate type only.

c. Assuming the availability of the true and complement of signals A, B, C, D and E, implement the shown circuit using minimum number of NAND gates only.

Question 4.

(12 Points)
Assuming that all numbers are held in 6-bit storage registers, answer the following:
a. If 2's complement binary representation is used, what is the range of values that each number may assume?
(2 points)
-2^{5} to $2^{5}-1$
$[-32,31]$
b. The largest number that can be subtracted from (-15) without causing overflow is
\qquad
17
(2 points)
c. Perform the following arithmetic operations in the indicated number representation. Then, convert the result to decimal and indicate if an overflow has occurred:
(i) $\quad(10)_{10}-(24)_{10}$ (using sign-magnitude binary representation).

$10<24 \rightarrow$-ive sign.	
$10=001010, \quad 24=$	011000
	11000
$01010-$	
01110	
	$=14$

(ii) 010010-111111 (using 1's complement binary representation).
$010010+000000=010010=18$
No overflow
(iii) 100000-100011 (using 2's complement binary representation).

$$
\begin{aligned}
&= 100000+011101 \\
& 100000 \\
& 011101+ \\
& \hline 111101 \\
&=-000011=-3
\end{aligned}
$$

No overflow
(iv) 010111-11 0111 (using 2's complement binary representation).

$$
\begin{aligned}
& =010111+001001 \\
& 010111 \\
& 001001+ \\
& \hline 100000 \\
& =-32 \\
& \rightarrow \text { No overflow }
\end{aligned}
$$

Question 5.
the Boolean function: $\boldsymbol{F}(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C})=\boldsymbol{A} \boldsymbol{B}+\overline{\boldsymbol{A}} \boldsymbol{C}+\overline{\boldsymbol{A}} \overline{\boldsymbol{B}}$
a. Using a single 4 x 1 multiplexer. (4 Points)
b. Using a minimum number of 2×1 multiplexers. (2 Points)
c. Using a single 3 x 8 decoder and an OR gate. (3 Points)
d. Using a single NOR gate and the minimum number of 2 x 4 decoders with enable. (4 Points)

b.

$$
c . \quad F=\sum m(0,1,3,6,7)
$$

d.

Question 6.

(10 Points)
a. Design a 4-bit adder/subtractor circuit which uses the least number of Full-Adders (FAs). The circuit receives two 4-bit signed numbers A and B (2's complement representation) and one control input (M). If the control input $M=0$, the 4 -bit circuit output equals $(\mathbf{A}+\mathbf{B})$. If the control input $\mathrm{M}=1$, it equals ($\mathbf{A}-\mathbf{B}$). The circuit has another output \mathbf{V} which equals $\mathbf{1}$ only in case of overflow.

Gate	Delay (ns)
AND	2
OR	2
XOR	3

b. Given the FA circuit shown below, calculate the worst-case delay of this adder/subtractor circuit assuming gate delays as given in the table to the right.

Delay $=3$ for B xor +3 for 1 st $H A+4 \times(4$ for 2 nd $H A$ with $C O R)+3$ for v xor
Delay $=25$

Question 7.

(7 Points)

A 4-bit adder/subtrctor circuit like the one designed in problem 6, is used here as a subtractor with the input control $\mathbf{M}=\mathbf{1}$ (see Figure).
It subtracts two 4-bit numbers (A, and B) producing a 4-bit result (X). It also produces the overflow flag \mathbf{V}, and $\mathbf{C o u t}_{\text {out }}$

This subtractor can be used to compare both unsigned and signed 4 -bit input numbers $(\mathbf{A}$ and $\mathbf{B})$ by computing ($\mathbf{A}-\mathbf{B}$). It can be shown that the comparator output ($\mathbf{A} \geq \mathbf{B}$) is given by:

Type of Input Operands (A \& B)	Comparator Output ($\mathrm{A} \geq \mathrm{B}$)
Unsigned	$\begin{aligned} & =1 \text { iff } \mathbf{C o u t ~}_{=1} \\ & =0 \text { otherwise } \end{aligned}$
Signed (2's Complement)	$\begin{aligned} & =1 \text { iff } \mathbf{V}=\mathbf{S i g n} \text { of the result } \mathbf{X} \\ & =0 \text { Otherwise } \end{aligned}$

Using this subtractor, design a circuit that compares two 4-bit input numbers A_{3-0} and B_{3-0} to output the larger of the two. The input numbers (A \& B) may be signed or unsigned. An additional input signal \mathbf{S} indicates whether the input numbers are signed ($\mathbf{S}=\mathbf{1}$) or unsigned ($\mathbf{S}=\mathbf{0}$).
In addition to the subtractor, you may use multiplexers of any size, and other needed gates. You MAY NOT USE any magnitude comparator.

