King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3) Term 131 (Fall 2013) Major Exam II Saturday November 30, 2013

Time: 120 minutes, Total Pages: 12

Name:	ID:	Section:

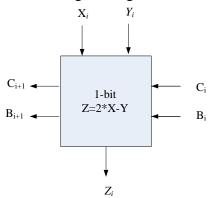
Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	14	
2	8	
3	20	
4	12	
5	15	
6	16	
Total	85	

Question 1. (14 points)

For the following Boolean function shown in the K-map:

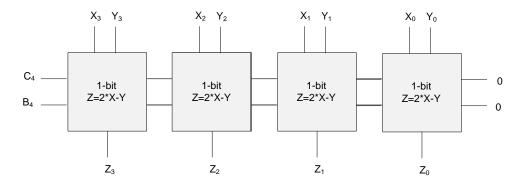

$$F(A, B, C, D)=\Sigma m(0, 1, 2, 3, 5, 7, 8, 10, 11, 13, 14, 15)$$

- **a.** Identify all possible <u>prime implicants</u> of F and indicate which of these is <u>essential</u>.
- **b.** Simplify the Boolean function F into a <u>minimal sum-of-products</u> expression.
- c. Simplify the Boolean function F into a minimal product-of-sums expression.

CI AB	00	01	11	10	ı
00	1	1	1	1	
01	0	1	1	0	
11	0	1	1	1	
10	1	0	1	1	

Question 2. (8 Points)

It is required to design a circuit to compute the equation Z=2*X-Y, where X and Y are two n-bit unsigned numbers. The circuit can be designed in a modular manner where it is designed for one bit and replicated n times. A 1-bit circuit block diagram is given below:



The meaning of the values of B_i and C_i is given in the table below:

B _i	Ci	Meaning
0	0	There is no carry or borrow
0	1	There is a carry of 1
1	0	There is a borrow of 1
1	1	This condition does not occur

For example, if $X_i=1$ and $Y_i=1$, then we should have $Z_i=1$, $B_{i+1}=0$ and $C_{i+1}=0$. If $X_i=0$ and $Y_i=1$, then we should have $Z_i=1$, $B_{i+1}=1$ and $C_{i+1}=0$.

The figure below shows how a 4-bit Z=2*X-Y circuit is implemented using 4 copies of the basic 1-bit cell.

Derive the truth table for the basic one-bit cell. You <u>do not need</u> to derive the equations for the circuit.

Question 3. (20 Points)

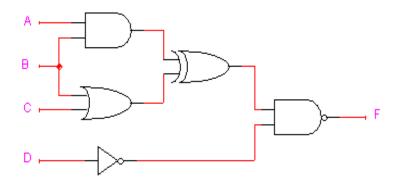
a. Fill in all blank cells in the two tables below.

	Equivalent decimal value with the binary interpreted as:				
Binary	Unsigned	Signed-magnitude	Signed-1's	Signed-2's	BCD
	number	number	complement number	complement number	number
10000000					

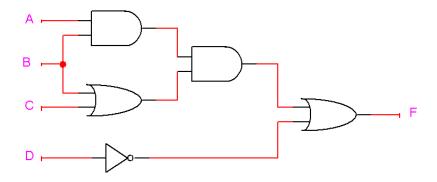
	Binary representation in 8 bits:		
Decimal	Signed-magnitude	Signed-1's complement	Signed-2's complement
	notation	notation	notation
- 75			

b. Using 2's-complement signed arithmetic in 5 bits, do the following operations **in binary**. Show all your work, and:

- Verify that you get the expected decimal results.


- Check for overflow and mark clearly any overflow occurrences.

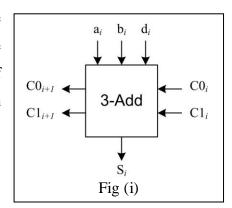
00111 - 10101	(ii) 10110 - 10011
(iii)	(iv)
+ (-11)	- (+7)


c. Consider the signed 2's complement arithmetic operation A - B in 6 bits. With B=101100, the largest value allowed for A in order to avoid the occurrence of overflow is (_____)₂.

Question 4. (12 Points)

1. (4 points) Considering the following circuit, provide a minimized SOP expression of F(A, B, C, D).

2. **(4 points)** <u>Using only NAND gates</u>, redraw the following circuit to show a multi-level **NAND** circuit. Only the **true** form of each input variable is available.



3. **(4 points)** Implement $F(A, B, C) = \prod M(0,1,4)$ using a 4-to-1 MUX. Show how you obtained your solution, and properly label all input and output lines.

Question 5. (15 Points)

A Triple adder **circuit** adds three n-bit numbers a, b, and d. The triple adder circuit consists of n-stages of the single bit circuit slice shown in Fig. (i) (called 3-Add). The i^{th} stage receives 5 inputs 3 of which are the i^{th} bits of a, b, and d and the other two are carry-in inputs $C0_i$ and $C1_i$. It has 3 outputs; one sum bit (S_i) and two carry-out bits $C0_{i+1}$ and $C1_{i+1}$.

Fig. (ii) shows the *n*-bit Triple adder circuit

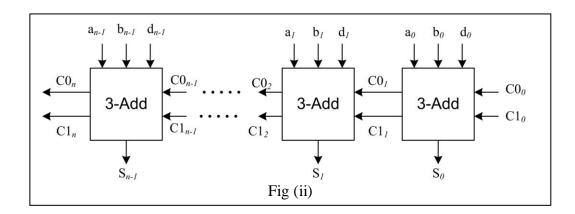
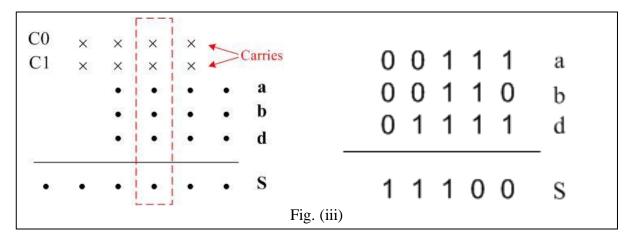
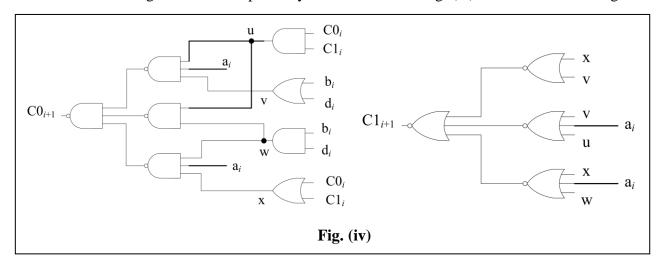
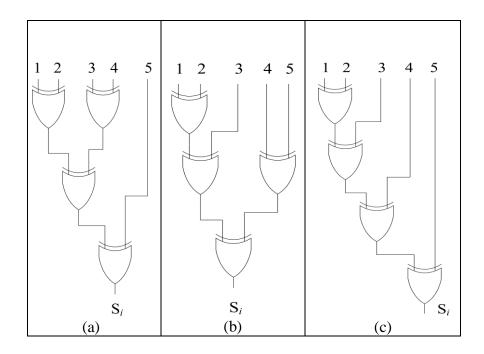




Fig. (iii) shows an example for such addition.

The circuits used to generate the output carry bits are shown in Fig. (iv). answer the following:


(I) Using the gate propagation delays of Table (i), what is the carry propagation delay *per single stage* for both of the output carries (C0 and C1)? (5 Points)

Gate	Delay
AND, NAND	1 ns
OR, NOR	3 ns
XOR	4 ns

Table (i)

(II) For the *n*-bit triple adder circuit of Fig. (ii), assuming a 12ns delay from the i^{th} input carries to the i^{th} sum signal (S_i), calculate the worst case delay to generate the *n*-bit sum (S_{n-1} S_{n-2....} S₁ S₀) of the three *n*-bit operands. (5 Points)

(III) The i^{th} output sum bit is given by $S_i = a_i \oplus b_i \oplus d_i \oplus CO_i \oplus CI_i$, select one of the following logic implementations of S_i to yield the fastest n-bit triple adder. You must Label the 5-inputs of this circuit (as a_i , b_i , d_i , CO_i , CI_i) and justify your answer. (5 Points)

Question 6. (16 Points)

a. Design a circuit that has a three-bit input X and three-bit output Y. Both X and Y represent the integers 0 to 7 (i.e., $X,Y \in \{0,1,...,7\}$). Using a *single* decoder and a *single* encoder of appropriate sizes, show how can you build a circuit that performs the function $[Y = 3X \mod 8]$. Make sure you *label all signals*. The truth table for this circuit is shown in decimal notation. [4 pts]

X	Y
0	0
1	3
2	6
3	1
4	4
5	7
6	2
7	5

b. Construct a 16-to-1 multiplexer using the minimum number of 4-to-1 multiplexers.

[5 pts]

0

A+B

A-B

A+1

A-1

 S_1S_0

00

c. Using <u>only</u> MSI parts, design a circuit that takes two 4-bit binary numbers $A = A_3A_2A_1A_0$ and $B = B_3B_2B_1B_0$ together with a 2-bit selection input $S = S_1S_0$. The circuit produces a 5-bit output $O = O_4O_3O_2O_1O_0$ according to the shown table:

the shown table:	01
- 4 - 1	10
ots]	11

<u>Clearly label</u> all inputs and outputs of the MSI parts.

[7	p	ts
----	---	----