King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)

Term 131 (Fall 2013)
Major Exam II
Saturday November 30, 2013

Time: $\mathbf{1 2 0}$ minutes, Total Pages: 12

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	14	
2	8	
3	20	
4	12	
5	15	
6	16	
Total	85	

For the following Boolean function shown in the K-map:
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1,2,3,5,7,8,10,11,13,14,15)$
a. Identify all possible prime implicants of F and indicate which of these is essential.
b. Simplify the Boolean function F into a minimal sum-ofproducts expression.

$\begin{array}{lllll} \hline \mathrm{CD} & & & \\ \hline \mathrm{AB} & 00 & 01 & 11 & 10 \\ \hline \end{array}$				
00	1	1	1	1
01	0	1	1	0
11	0	1	1	1
10	1	0	1	1

c. Simplify the Boolean function F into a minimal product-of-sums expression.

Question 2.

It is required to design a circuit to compute the equation $\mathrm{Z}=2 * \mathrm{X}-\mathrm{Y}$, where X and Y are two n -bit unsigned numbers. The circuit can be designed in a modular manner where it is designed for one bit and replicated n times. A 1-bit circuit block diagram is given below:

The meaning of the values of B_{i} and C_{i} is given in the table below:

B_{i}	C_{i}	Meaning
0	0	There is no carry or borrow
0	1	There is a carry of 1
1	0	There is a borrow of 1
1	1	This condition does not occur

For example, if $\mathrm{X}_{\mathrm{i}}=1$ and $\mathrm{Y}_{\mathrm{i}}=1$, then we should have $\mathrm{Z}_{\mathrm{i}}=1, \mathrm{~B}_{\mathrm{i}+1}=0$ and $\mathrm{C}_{\mathrm{i}+1}=0$. If $\mathrm{X}_{\mathrm{i}}=0$ and $\mathrm{Y}_{\mathrm{i}}=1$, then we should have $\mathrm{Z}_{\mathrm{i}}=1, \mathrm{~B}_{\mathrm{i}+1}=1$ and $\mathrm{C}_{\mathrm{i}+1}=0$.

The figure below shows how a 4 -bit $\mathrm{Z}=2 * \mathrm{X}-\mathrm{Y}$ circuit is implemented using 4 copies of the basic 1-bit cell.

Derive the truth table for the basic one-bit cell. You do not need to derive the equations for the circuit.

Page 4 of 12

Question 3.

(20 Points)
a. Fill in all blank cells in the two tables below.

Binary	Equivalent decimal value with the binary interpreted as:				
	Unsigned number	Signed-magnitude number	Signed-1's complement number	Signed-2's complement number	BCD number
1000000					

Decimal	Binary representation in 8 bits:		
	Signed-magnitude notation	Signed-1's complement notation	Signed-2's complement notation
-75			

b. Using 2 's-complement signed arithmetic in 5 bits, do the following operations in binary. Show all your work, and:

- Verify that you get the expected decimal results.
- Check for overflow and mark clearly any overflow occurrences.

c. Consider the signed 2's complement arithmetic operation A - B in 6 bits. With $\mathrm{B}=101100$, the largest value allowed for A in order to avoid the occurrence of overflow is (\qquad $)_{2}$.

Question 4.

1. (4 points) Considering the following circuit, provide a minimized SOP expression of $F(A, B, C, D)$.

2. (4 points) Using only NAND gates, redraw the following circuit to show a multi-level NAND circuit. Only the true form of each input variable is available.

3. (4 points) Implement $F(A, B, C)=\Pi M(0,1,4)$ using a 4-to-1 MUX. Show how you obtained your solution, and properly label all input and output lines.

Question 5.
A Triple adder circuit adds three n-bit numbers a, b, and d . The triple adder circuit consists of n-stages of the single bit circuit slice shown in Fig. (i) (called 3-Add). The $i^{\text {th }}$ stage receives 5 inputs 3 of which are the $i^{\text {th }}$ bits of a, b, and d and the other two are carry-in inputs C_{i} and C_{i}. It has 3 outputs; one sum bit $\left(\mathrm{S}_{i}\right)$ and two carryout bits C_{i+1} and C_{i+1}.
Fig. (ii) shows the n-bit Triple adder circuit

Fig. (iii) shows an example for such addition.

The circuits used to generate the output carry bits are shown in Fig. (iv). answer the following:

Fig. (iv)
(I) Using the gate propagation delays of Table (i), what is the carry propagation delay per single stage for both of the output carries (C 0 and C 1)?

Gate	Delay
AND, NAND	$\mathbf{1} \mathbf{n s}$
OR , NOR	3 ns
XOR	4 ns

Table (i)
(II) For the n-bit triple adder circuit of Fig. (ii), assuming a 12 ns delay from the $i^{\text {th }}$ input carries to the $i^{\text {th }}$ sum signal $\left(\mathrm{S}_{i}\right)$, calculate the worst case delay to generate the n-bit sum ($\mathrm{S}_{n-1} \mathrm{~S}_{n-2} \ldots . . \mathrm{S}_{1} \mathrm{~S}_{0}$) of the three n-bit operands.
(III) The $i^{\text {th }}$ output sum bit is given by $\boldsymbol{S}_{\boldsymbol{i}}=\boldsymbol{a}_{\boldsymbol{i}} \oplus \boldsymbol{b}_{\boldsymbol{i}} \oplus \boldsymbol{d}_{\boldsymbol{i}} \oplus \boldsymbol{C 0}_{\boldsymbol{i}} \oplus \boldsymbol{C 1}_{\boldsymbol{i}}$, select one of the following logic implementations of S_{i} to yield the fastest n-bit triple adder. You must Label the 5-inputs of this circuit ($\mathrm{as}_{\mathrm{a}}, \mathrm{b}_{i}, \mathrm{~d}_{i}, \mathrm{C}_{i}, \mathrm{C}_{i}$) and justify your answer.

Question 6.

(16 Points)
a. Design a circuit that has a three-bit input X and three-bit output Y . Both X and Y represent the integers 0 to 7 (i.e., $\mathrm{X}, \mathrm{Y} \in\{0,1, \ldots, 7\}$). Using a single decoder and a single encoder of appropriate sizes, show how can you build a circuit that performs the function [$\mathbf{Y}=\mathbf{3 X}$ mod 8]. Make sure you label all signals. The truth table for this circuit is shown in decimal notation. [4 pts]

\mathbf{X}	\mathbf{Y}
0	0
1	3
2	6
3	1
4	4
5	7
6	2
7	5

b. Construct a 16 -to- 1 multiplexer using the minimum number of 4 -to- 1 multiplexers.
c. Using only MSI parts, design a circuit that takes two 4-bit binary numbers $\mathrm{A}=\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$ and $\mathrm{B}=\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$ together with a 2-bit selection input $\mathrm{S}=\mathrm{S}_{1} \mathrm{~S}_{0}$. The circuit produces a 5-bit output $\mathrm{O}=\mathrm{O}_{4} \mathrm{O}_{3} \mathrm{O}_{2} \mathrm{O}_{1} \mathrm{O}_{0}$ according to the shown table:

Clearly label all inputs and outputs of the MSI parts.
[7 pts]

$\mathbf{S}_{\mathbf{1}} \mathbf{S}_{\mathbf{0}}$	\mathbf{O}
00	$\mathrm{~A}+\mathrm{B}$
01	$\mathrm{~A}-\mathrm{B}$
10	$\mathrm{~A}+1$
11	$\mathrm{~A}-1$

