King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)

Term 122 (Spring 2013)
Major Exam II
Thursday April 18, 2013

Time: $\mathbf{1 5 0}$ minutes, Total Pages: 12

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	14	
2	15	
3	17	
4	8	
5	12	
6	8	
7	92	
Total		

For the following Boolean function shown in the K-map:
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1,2,3,4,5,6,8,10,13,15)$
a. Identify all the prime implicants and the essential prime implicants of F .
b. Simplify the Boolean function \mathbf{F} into a minimal sum-ofproducts expression.

$A B \stackrel{C D}{00}$		01	11	10
00	1	1	1	1
01	1	1	0	1
11	0	1	1	0
10	1	0	0	1

c. Simplify the Boolean function \mathbf{F} into a minimal product-ofsums expression.

It is required to design a Tripler circuit. The circuit receives an n-bit number X and computes the result $\mathrm{Y}=3 * \mathrm{X}$.
a. If the input is an n-bit unsigned number, what is the size of the output " y " in bits?

b. The circuit can be constructed using n identical copies of the basic 1-bit cell shown to the right. The cell processes one input bit ($\mathrm{X} i$) and produces one output bit ($\mathrm{Y} i$) and two output carry bits (CO0 and CO1). To allow for cascading n such cells to implement an n-bit Tripler, the basic cell also accepts two input carry bits (CI0 and CI1). When the output carry equals 1 then $\mathrm{CO} \mathrm{CO}=01$ while when it equals 2 then $\mathrm{CO} 1 \mathrm{CO} 0=10$.

The Figure below shows how a 4-bit Tripler circuit is implemented using 4 copies of the basic 1-bit cell.

Derive the truth table for the basic one-bit cell.
(Hint: As the initial input carries $=00$, the maximum carry from one cell to the next is 2)
c. Derive a minimized sum-of-product expressions for the outputs of the basic one-bit cell.

Question 3.

a. Fill in all blank cells in the two tables below. All binary representations use 7 bits

Binary	Equivalent decimal value with the binary interpreted as:			
	Unsigned number	Signed-magnitude number	Signed-1's complement number	Signed-2's complement number
1011010				

Decimal	Binary representation in:		
	Signed-magnitude notation	Signed-1's complement notation	Signed-2's complement notation
-59			

b. Using 2's-complement signed arithmetic in $\mathbf{5}$ bits, perform the following operations in binary. Show all your work. Verify that you get the expected decimal results.

Check for overflow and mark clearly any occurrences of it.

| 11010 | (i) | 00101 |
| :--- | :--- | :--- | :--- |
| $+\underline{11001}$ | | |

c. When doing signed 2 's complement arithmetic in $\mathbf{6}$ bits, the smallest binary number that will cause overflow when subtracted from 101000) 2 is \qquad .

Question 4.

a. Show the logic diagrams that implement the given logic circuit using the minimum number of:
i. 2-input NOR gates only. Use the following symbol for this NOR gate:

ii. 2-input NAND gates only. Use the following symbol for this NAND gate:

Note: Complements of the input variables are readily available.

b. In the logic circuit shown below, with \mathbf{A} being any 4-bit input value,

- Output $1=$ \qquad (0 / 1 / Depends on A), and
- Output $2=$ \qquad (0 / 1 / Depends on A).

Note: The odd function gives a 1 output when the number of 1 s in the input is odd.

Question 5.

You are required to design a circuit that adds four unsigned 4-bit numbers. The following is the high-level diagram of the circuit.

b. Using ONLY 4-bit adders, show how the above circuit can be constructed? [10 pts]

Assuming the availability of the true and complement of signals A, B and C , implement the following Boolean function.

$$
F(A, B, C)=\bar{A} \bar{B} C+B \bar{C}+A B
$$

a. Using a single minimum size multiplexer. [4 pts]
b. Using a single minimum size decoder and minimum other gates. [4 pts]

Question 7.

It is required to build a 4-bit binary parallel adder which adds two 4-bit numbers $\mathbf{A}\left(\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{l} \mathrm{~A}_{0}\right)$, and $\mathbf{B}\left(\mathrm{B}_{3} \quad \mathrm{~B}_{2} \quad \mathrm{~B}_{I} \quad \mathrm{~B}_{0}\right)$ together with an input carry bit C_{0} (which may be 0 or 1).

The full adder circuit shown below will be used as a main building block of this adder.

a. Write the Boolean expressions of the $\mathrm{P}_{i}, \mathrm{G}_{i}, \mathrm{~S}_{i}$ and C_{i+1} full adder signals.
(2 Points)
b. If the 4-bit adder is implemented as a Ripple Carry Adder (RCA), draw the block diagram implementation of this adder.
(1 Point)
c. Assuming gate delays of $\mathbf{3 n s}$ for XOR gates and 1ns for other gates;
(3 Points)
I. What are the delays of the P_{0} and G_{0} signals?
II. What are the delays of the P_{3} and G_{3} signals?
III. What is the carry-propagation delay of a single full adder (i.e., delay from \mathbf{C}_{i} to \mathbf{C}_{i+1})?
d. What is the worst case delay of the 4-bit RCA?
(4 Points)
e. If the 4-bit adder is implemented as a Carry Lookahead Adder (CLA), derive the Boolean expressions of the four Carry signals $\mathbf{C}_{1}, \mathbf{C}_{2}, \mathbf{C}_{3}$, and \mathbf{C}_{4}.
(2 Points)
f. Draw a block diagram (no detailed 2-level gate implementations) of the CLA adder implementation (2 Points)

