King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)

Term 121 (Fall 2012)
Major Exam II
Thursday Nov. 22, 2012

Time: 150 minutes, Total Pages: 9

Name: \qquad ID: \qquad Section: \qquad

Notes:

- Do not open the exam book until instructed
- Calculators are not allowed (basic, advanced, cell phones, etc.)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	15	
2	14	
3	9	
4	15	
5	11	
6	13	
7	8	
Total	85	

Question 1.

(15 points)

The logic function $\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})$ is plotted on the K -map shown below. Z is the LSB .
a. The function F can be expressed in the canonical form as a product of maxterms as follows: (2 points)
$\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Pi \mathrm{M}($ \qquad
b. Indicate whether each of the following is True or False: (2 Points)

- $\quad W \bar{X} Z$ is a prime implicant for the function
- $\bar{W} X Y$ is an essential prime implicant for the function

c. The function F can be minimized to an optimal algebraic sum of products as:
(3 points)
$\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=$ \qquad
d. The function F can be minimized to an optimal algebraic product of sums as:
(5 points)
$\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=$ \qquad
e. If we are told that we should not care about the output of the circuit implementing F for the input combination $\mathrm{WXYZ}=1010$.
(3 Points)
i) Indicate this condition on the K-map
ii) If this information leads to a more optimal expression for F than that obtained in part (c) above, then give that more optimal expression.

Question 2.

We would like to design a combinational circuit that multiples two unsigned integers X and Y and produces the product as output Z , i.e. $\mathrm{Z}=\mathrm{XY}$. Each of the two integers X and Y is 2 bits. The binary representations of the input and output numbers are $\mathrm{X}_{1} \mathrm{X}_{0}$ for $\mathrm{X}\left(\mathrm{X}_{0}\right.$ is the $\left.\operatorname{LSB}\right), \mathrm{Y}_{1} \mathrm{Y}_{0}$ for $\mathrm{Y}\left(\mathrm{Y}_{0}\right.$ is the LSB), $\mathrm{Z}_{\mathrm{n}} \ldots \mathrm{Z}_{2} \mathrm{Z}_{1} \mathrm{Z}_{0}$ for $\mathrm{Z}\left(\mathrm{Z}_{0}\right.$ is the LSB$)$.
a. (8 points) Fill in all the required information in the table below.

Circuit Input $\mathrm{X}_{1} \mathrm{X}_{0} \mathrm{Y}_{1} \mathrm{Y}_{0}$	Circuit Output $\mathrm{Z}_{\mathrm{n}} \ldots \mathrm{Z}_{2} \mathrm{Z}_{1} \mathrm{Z}_{0}$	
(Binary)	(Binary)	(Decimal)

b. (6 points) Use a K-map of the appropriate size to minimize the binary output $\mathbf{Z 1}$ and express the minimized function as a sum of products in terms of the binary inputs $\mathrm{X}_{1}, \mathrm{X}_{0}, \mathrm{Y}_{1}$, and Y_{0}. Show all your work.
(a) (5 points) Draw the multi-level NAND logic diagram for the following Boolean expression, don't simplify:

$$
(\bar{A} B+\bar{C} D) E+A \bar{D}(B+C)
$$

(b) (4 points) Using the minimum number of logic gates, draw the 2-level NOR logic diagram for the following Boolean expression:

$$
F(A, B, C)=\Sigma \mathrm{m}(0,3,5,6)
$$

Question 4.
(a) (6 points) Determine the decimal value of the 7-bit binary number (1001100) when interpreted as:

Unsigned number	Signed-magnitude number	Signed-1's complement number	Signed-2's complement number

(b) (3 points) Find the smallest 7 -bit signed-2's complement number that can be added to the 7 -bit signed-2's complement number (1001100) without causing an overflow. Note that negative numbers are considered to be smaller than positive numbers.
(c) (6 points) Perform the following signed-2's complement arithmetic operations in binary using $\mathbf{5}$ bits. All numbers given are represented in the signed-2's complement notation. Indicate clearly the carry values out of the last two bits. For each of the two operations, check and indicate whether an overflow has occurred or not.

| Operation | Carry value
 out of the
 $4^{\text {th }}$ bit | Carry value
 out of the
 $5^{\text {th }}$ bit | Overflow
 occurred?
 (Yes/No) |
| :---: | :---: | :---: | :---: | :---: |
| a.01011
 +11110 | | | |
| b.01001
 $\underline{-10010}$ | | | |

Question 5.
(a) (6 points) You are given one 3-to-8 decoder, one NOR gate and one OR gate to implement the two functions given below.

$$
\begin{aligned}
& \mathbf{F}_{1}(\mathbf{A}, \mathrm{~B}, \mathrm{C})=\Pi M(\mathbf{0}, \mathbf{1}, \mathbf{4}, \mathbf{5}, \mathbf{6}) \\
& \mathbf{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(0,4, \mathbf{6})+\sum \mathrm{d}(\mathbf{1}, \mathbf{3})
\end{aligned}
$$

Draw the circuit and properly label all input and output lines.
(b) (5 points) Given the truth table below for a function with four inputs ($\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D) and one output F, implement F using a 4-to-1 MUX (with 2 select lines) and additional logic. Show how you obtained your solution, and properly label all input and output lines. Apply A and B to the select inputs.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{F}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

Question 6.

Assume that the delay of a 2 -input XOR gate is 3 ns while the delay of other gates is equal to the gate's number of inputs, i.e. the delay of an inverter is 1 ns , the delay of a 2 -input AND gate is 2 ns , the delay of a 2 -input OR is 2 ns , the delay of a 3 -input AND gate is 3 ns , the delay of a 3 -input OR gate is 3 ns , etc.
(a) (6 points) A 4-bit Ripple Carry Adder (RCA) is given below:

Determine and compute the longest delay in the 4-bit Ripple Carry Adder (RCA).
(b) (4 points) Show the design of a 2-bit Carry Look-Ahead Adder (CLA) by drawing its logic diagram.
(c) (3 points) Using the delay assumptions given in the beginning of the question, determine and compute the longest delay in the 2-bit Carry Look-Ahead Adder (CLA).

Question 7.

Using a minimal number of MSI components such as: decoders, encoders, multiplexers, adders, magnitude comparators and other necessary logic gates, design a circuit that takes two 4-bit binary numbers $A=A_{3} A_{2} A_{1} A_{0}$ and $B=B_{3} B_{2} B_{1} B_{0}$ and a 2 -bit user selection input $S=S_{1} S_{0}$. The circuit should produce a 5-bit output $O=\mathrm{O}_{4} \mathrm{O}_{3} \mathrm{O}_{\mathbf{2}} \mathrm{O}_{\mathbf{1}} \boldsymbol{O}_{\mathbf{0}}$ according to the following table:

$S_{1} S_{0}$	O is equal to
00	$\mathrm{~A}+\mathrm{B}$
01	$\mathrm{~A}-\mathrm{B}$
10	$\mathrm{~A}+1$
11	$2 * \mathrm{~A}$

